
Float Reference

Contents
Services 3

Compute units . 4
Structuring services in terms of compute units 4
Containers . 6
System-level daemons . 7
Networking . 7
Users and permissions . 7

Data . 8
Backups . 8
Volumes . 9

SSL Credentials . 9
Internal mTLS PKI . 9
Public credentials . 10

Configuration . 11
On the Ansible requirement . 11

Infrastructure Part 1: Base Layer 12
Service Discovery . 13

Naming . 13
Locating service backends . 13

Network Overlay . 15
Traffic Routing . 15

High-level traffic flow . 15
HTTP . 16
SSL Certificates . 16
HTTP Cache . 16
Controlling incoming HTTP traffic 16
Non-HTTP . 16

Public DNS . 17
Customizing DNS . 17

SSL . 19
Generating additional SSL certificates 20

SSH . 20

1

SSH Host Certificates . 20
SSH Client Setup . 21

Integrating base services with other automation 21

Infrastructure Part 2: Cluster Services 21
Authentication and Identity . 21

Authentication . 22
Single sign-on . 23
User-encrypted secrets . 24
Authentication workflows . 24

Monitoring . 29
Customizing alerts . 29
Scaling up the monitoring infrastructure 30
Adding external targets . 31
Adding blackbox probes . 31
Customizing alert timeouts for additional blackbox probes 33

Log Collection and Analysis . 34
Log types . 34
Metric extraction . 34
Metadata extraction . 34
Technical implementation details 35

Configuration 37
Inventory (hosts.yml) . 38

Groups . 38
Host variables . 38
Example . 39

Service metadata (services.yml) . 40
Scheduling . 40
Credentials . 41
Monitoring . 41
Traffic routing . 42
Containers . 43
Non-container services . 44
Additional service ports . 44
Datasets . 45
Volumes . 45
Annotations . 46
Examples . 46

Application credentials (passwords.yml) 47
Global configuration variables . 48

Network overlays . 49
Admin users . 49
Authentication and SSO . 49
SSH . 49
DNS . 50

2

Traffic router . 50
Logging . 50
Monitoring . 50
Third-party services . 51

Operations 53
Requirements . 53

On the driver host . 53
On the target hosts . 54

Ansible Integration . 54
Setting up your Ansible environment 55
Variables . 56
Groups . 56

The float command-line tool . 57
create-env . 57
run . 59
Built-in playbooks . 59

Testing . 60
Running float with Vagrant . 60
Functionality available in testing environments 60

List of administrative web applications 61
Common tasks . 61

Rolling back the configuration . 61
Adding an admin account . 62
Setting up OTP for an admin account 62
Registering a U2F hardware token for an admin account 63
Upgrading Debian version on target hosts 63
Decommissioning a host . 64

Example scenarios 64
Simple HTTP application . 64
A UDP service . 65

Services
The fundamental concept in float is the service, a loose articulation of com-
pute elements (containers, system-level daemons) and data, with standardized
metadata properties that float uses to integrate it with its infrastructure.

A description of the service (its specification) is provided to float as part of its
configuration. Float can manage an arbitrary number of services on a single
infrastructure. The mapping between a "float service" and a "high-level, user-
visible service" is quite often not one-to-one: float services are meant to describe
the high-level service’s internal architecture, which can be made up of multiple
components.

3

In float, a service is also a schedulable unit: the service specification is in fact
a template for specific service instances, of which there can be again more
than one; consider for example the case of service replication for reliability /
high-availability purposes. Float will never schedule more than one instance of a
service on each host.

The decision to assign an instance of a service to a specific host is called
scheduling, and it is completely controlled by float based on parameters of the
service specification: it is possible to control the desired number of instances,
and to restrict the choice of possible hosts by using host groups (leveraging
the Ansible host group concept). The operator has no control on the specific
assignments beyond that, and they may change at any time.

Float’s scheduler is not particularly smart. It does not perform any kind of
bin-packing (it only looks at instance counts), and, most importantly, it is
offline-only: scheduling is only performed when Ansible runs, there is no online
component to rebalance instances when they fail or to react to changes in load
etc.

The float scheduler produces stable and reproducible results, which is very
important given how it is meant to be used. The randomness used by the
scheduling algorithm is seeded on the configuration itself, so two people running
float on the same configuration on two different machines will obtain identical
assignments.

Compute units
Compute units in float are long-running processes controlled via systemd. Float
creates a systemd unit for every service instance on the hosts where it is supposed
to run.

It is possible to specify more than one compute unit for the same service: in this
case, they will all be scheduled together as part of the same service instance,
and they will be reachable under the same service name (supposedly they will
be using different network ports for communication).

Structuring services in terms of compute units

To show one possible approach to the subdivision of a service into fundamental
compute units, we’re going to show an example scenario and demonstrate the
reasoning behind some possible choices, and how they relate to concepts in float.

Let’s consider as an example a fairly typical two-layer service that uses Apache
+ PHP to serve a website, ignoring an eventual MySQL for now. This is a
request-based service so some of the considerations that we’re going to make will
be specific to this perspective.

There are two major possibilities for representing such a service within float:

4

1. a float service "apache" and another float service "php", which may po-
tentially be scheduled on different hosts, and that talk to each other over
the service boundary: apache finds php endpoints using float’s service
discovery mechanism (i.e. DNS);

2. a single float service "web", with apache and php bundled together as a
single unit of deployment, where apache talks to php inside the service
boundary (i.e. it connects to localhost). This scenario can be further split
into two:

1. the float service "web" consists of an apache container and a separate
php container, each runs independently of the other, they talk to
each other either over the network (on localhost), or via an explicitly
shared mechanism on the host (for instance a shared /run/web/sockets
directory);

2. the float service "web" consists of a single container that bundles
together apache and php, maybe here they talk to each other via a
/run/web/sockets directory that is completely internal to the container
itself.

Obviously the first problem to solve is that abstractions must make sense
to you and to the specific problem you’re solving. Here the "apache" and
"php" components were pretty obvious choices for the two-layer service we were
considering.

The second thing to consider in terms of float architecture is what we want
the request flow to be: how, specifically, each component in our service stack is
supposed to talk to the following one as the request flows downstream through
the layers. Including float’s reverse proxy layer in the picture, the conceptual
flow is quite simple:

reverse proxy
|
V

apache
|
V

php

These components may be scheduled on different hosts (or not), so one thing
to consider is what the latency at each step will be. Generally, as you move
downwards the service stack, there is also a fan-out factor to consider: consider
a PHP script making multiple MySQL requests, for instance.

The choice of representation depends on a number of different criteria and
decisions, of which we’ll name a few:

• A good question to consider is "what kind of actions do you want to take in
order to scale your service"? Maybe you run a datacenter, servers are just
bare compute capacity for you, and can just add new ones when apache
or php look busy, independently, in which case you’d go towards scenario

5

#1. Or perhaps your service is data-partitioned, and to add a new server
means moving some of your data to it, in which case it would makes sense
to co-locate apache and php with the data, which makes scenario #2 look
more suitable.

• If your service is distributed among hosts in different locations, you might
like scenario #2 more as it contains the latency to the reverse proxy ->
apache hop.

• For scenario #2, to decide amongst its two variants, another good question
is "how do you like to build your containers"? This is a release engineering
topic that depends on your CI, on what your upstreams look like, etc.

In terms of container bundling (#2.1 vs #2.2 above), we like our containers do to
"one thing", for whatever definition of "thing" you find useful (provide a service,
for example), so we run an init daemon inside our containers to differentiate
between important processes, that control the lifecycle of the container itself,
and non-important ones that can simply be restarted whenever they fail.

For instance, let’s consider a hypothetical mailing list service: this has at least
two major inbound APIs, a SMTP entry point for message submission, and an
HTTP API for mailing list management. These are implemented by separate
processes. We also want to run, say, a Prometheus exporter, yet another separate
process: but we don’t particularly care about its fate as long as it is running,
and anyway monitoring will tell us if it’s not running, so this process is "less
important" than the first two. We would have these three processes in a single
container, with the first two marked as "important" (i.e. the container will
terminate when they exit, signaling a failure to float through systemd and
monitoring), while the exporter would be marked as not-important and simply
silently restarted whenever it fails.

Containers

The primary form of compute unit in float is a container. Float will automatically
download the images and run the containers specified in the service description.

Though it is possible to run all kinds of container images, float is explicitly tuned
towards a very particular kind of it:

• logs to standard output/error
• can run as an arbitrary (not known in advance) user ID, does not require

to be run as internal uid 0
• can run from a read-only root filesystem image (except for the usual /tmp

/run etc)
• can be configured via environment variables

Such containers will result in the least amount of additional configuration in the
service description.

Float can use either docker or Podman for running containers, though on modern
systems (Debian buster and up) it will choose Podman.

6

System-level daemons

Since float controls services by representing them as systemd units, it is also
possible to create services that are made of system-level processes, i.e. "normal"
systemd units.

This is convenient, for instance, when you are migrating an existing infrastructure
to float, and you want to control the pace of containerization of your services:
if you can describe your service in terms float understands, you can continue
to configure it at the system level using Ansible and at the same time take
advantage of float’s infrastructural services.

Networking

Compute units in float share the host network namespace, network daemons are
normally expected to bind to 0.0.0.0, while float manages the firewall to prevent
unauthorized access.

Since the service mechanism discovery provides no way to do port resolution, all
instances of a service are expected to use the same ports.

Float supports automatic provisioning of the firewall for TCP ports, in the
following way:

• ports specified in a container description can be reached by other containers
running on the same host, specifically other containers parts of the same
service, as localhost;

• ports specified in the service description can be reached by other hosts
(over the float infrastructure internal network overlay);

• ports that are part of the service’s public endpoints can be reached by the
float frontend reverse gateway hosts, over the internal network overlay;

• ports that are part of the service’s monitoring endpoints can be reached
by the hosts where the monitoring scrapers are running, over the internal
network overlay.

In no case float will allow public access to a service. If this is desired, or if a
service requires unsupported networking configuration (UDP, other protocols,
etc.), it has to be achieved by adding the relevant firewall configuration snippet
manually via the service’s Ansible role.

Users and permissions

For isolation purposes, float will create a dedicated UNIX user and group for
every service on the hosts where its instances run. For historical reasons, this
user will be called docker-servicename. The containers will be run as this user,
unless explicitly configured otherwise.

If you need to share data with the container, for instance by mounting data
volumes, use this user (or group) for filesystem permissions.

7

If the service has any service_credentials, a dedicated UNIX group will be created
for those named credentials-name-credentials, and the service user will be a
member of it.

Data
Datasets allow you to describe data that is attached to a service: this information
will be used to automatically configure the backup system. A dataset is either a
local filesystem path, or something that can be dumped/loaded via a pipe. It is
associated with every instance of the service, so it usually identifies local data.
This assumes a partitioned service by default. But master-elected services can
use the on_master_only option to make backups of global, replicated datasets
only once (on the service master host).

Backups

If provided with credentials for an external data repository, float will auto-
matically make backups of your configured datasets. These aren’t just used
for disaster recovery, but are an integral part of float’s service management
approach: when a service is scheduled on a new host, for instance as a result of a
re-scheduling, float will attempt to automatically restore the associated datasets
from their backups. Restores can of course also be triggered manually whenever
necessary.

Float offers two backup mechanisms for datasets:

• For bulk data, it can use its own backup management system (tabacco) on
top of Restic, which adds additional metadata to Restic snapshots to map
float datasets. This can be used as a primitive failover solution for services
that aren’t "important" enough to afford their own distributed storage
abstractions, and where losing up to one day of changes is tolerable. An
alternative, "live" solution, that would favor correctness over availability,
is also in the works. This backup mechanism is extensible to understand
the structure and metadata of specific services’ entities and accounts, if
necessary.

• There are a number of instances, in float, of a specific category of service,
single-hosted small API services that run off a simple SQLite database,
some of which are critical to float’s operation (for example the backup
metadata service itself). For this particular use case, float supports backups
with Litestream, an asynchronous replication solution for SQLite, that
offers point-in-time restore capabilities (less than 1 second of data loss
window) in case of disaster or when the service is rescheduled.

Litestream requires an S3-compatible backend (Minio, AWS, etc).

Note that float does not, in its default configuration, provide the data storage
services used by its backup mechanisms. These are treated as third-party
(external) resources.

8

https://git.autistici.org/ai3/tools/tabacco
https://litestream.io

Volumes

Volumes represent LVs that are associated with a service. They are managed
by float, which makes sure that they are present on the hosts. Volumes aren’t
currently being ever removed, because we’re scared of deleting data.

SSL Credentials
In the spirit of separation between internal and user-facing concerns, float offers
both an internal X509 PKI for mutual service authentication, and an integration
with ACME services such as Letsencrypt for user-facing SSL certificates.

Internal mTLS PKI

Service communication should be encrypted, and communicating services should
authenticate each other. One of the ways to do this is with TLS as the transport
layer. Float provides its own service PKI to automatically generate X509
credentials for all services.

The X509 certificates are deployed on the host filesystem, and access to them
is controlled via UNIX permissions (using a dedicated group, which the service
user is a member of). This provides an attestation of UNIX identity across the
whole infrastructure.

Each service, in services.yml, can define multiple credentials, each with its own
name and attributes: this can be useful for complex services with multiple
processes, but in most cases there will be just a single credential, with the same
name as the service. When multiple credentials are used, all server certificates
will have the same DNS names (those associated with the service), so it’s unusual
to have multiple server credentials in a service specification.

Credentials are saved below /etc/credentials/x509/<name>, with the follow-
ing structure:

/etc/credentials/x509/<name>/
+-- ca.pem CA certificate for the service PKI
+-- client/
| +-- cert.pem Client certificate
| \-- private_key.pem Client private key
\-- server/

+-- cert.pem Server certificate
\-- private_key.pem Server private key

Private keys are stored unencrypted, and are only readable by the
<name>-credentials group. The user that the service runs as must be
a member of this group.

Server certificates will include all the names and IP addresses that service
backends are reachable as. This includes:

9

• service_name.domain
• service_name
• hostname.service_name.domain
• hostname.service_name
• shard.service_name.domain (if present)
• fqdn
• localhost
• all public IP addresses of the host
• all IP addresses of the host on its network overlays

The purpose is to pass server name validation on the largest number of clients
possible, without forcing a specific implementation.

Client certificates have the following names, note that it is using the credentials
name, not the service name:

• name.domain
• name

Using multiple client credentials for a single service might allow ACL separation
in complex services.

Most legacy services should be able to implement CA-based client certificate
validation, which at least protects the transport from unprivileged observers.
But some clients can validate the client certificate CN, which implements a
form of distributed UNIX permission check (the client had access to a specific
certificate), and is therefore preferable.

Public credentials

Float runs an ACME client to generate valid SSL certificates for public-facing
HTTPS domains associated with a service.

Since these SSL certificates are relatively short-lived, the ACME mechanics run
online on the target infrastructure: certificates are continuously renewed, not
only when you run Ansible.

SSL certificates are normally only consumed by the frontend float service, where
incoming traffic is SSL-terminated by the traffic routers; internal services run
with certificates from the internal PKI for mutual authentication with the traffic
routers. However this is only the case for HTTP-based services: float does
not currently offer SSL termination for other protocols, in which case the SSL
connections will be forwarded directly to the backend service, which then needs
access to the public SSL certificates. A dedicated mechanism is provided so that
a service can "request" a local copy of the certificates, and be reloaded when it
is updated.

10

Configuration
Most services won’t be configurable just with environment variables, and are
going to require some sort of configuration file. Float has no facilities for
specifying configuration file contents in the service description metadata itself:
this responsibility is delegated to Ansible. An Ansible role, associated with
the service, should be used to create the necessary configuration files and other
required system-level setup for the service.

services.yml

myservice:
containers:

- name: http
image: myservice:stable
volumes:

- /etc/myservice.conf: /etc/myservice.conf

roles/myservice/tasks/main.yml

- template:
src: myservice.conf.j2
dest: /etc/myservice.conf
group: docker-myservice
mode: 0640

roles/myservice/templates/myservice.conf.j2

Just an example of an Ansible template, with no particular meaning.
domain={{ domain }}

The Ansible role then needs to be explicitly associated to the hosts running the
service instances via the Ansible playbook (unfortunately float can’t automati-
cally generate this association itself):

- hosts: myservice
roles:

- myservice

This takes advantage of the fact that float defines an Ansible group for each
service with the same name as the service itself, normalized to satisfy Ansible
group naming expectations (replacing dashes - with underscores _, e.g. my-
service would become my_service). This group includes the hosts that the
service instances have been scheduled on.

On the Ansible requirement

Does the above mean you have to learn Ansible in order to use float? Should you
be concerned about investing effort into writing a configuration for my service
in yet another configuration management system’s language? The answer is yes,
but to a very limited extent:

11

• You do need knowledge of how to set up an Ansible environment: the role
of ansible.cfg, how to structure group_vars etc. Writing a dedicated
configuration push system for float was surely an option, but we preferred
relying on a popular existing ecosystem for this, both for convenience of
implementation and also to allow a migration path of co-existence for
legacy systems. To counter-balance, float tries to keep its usage of Ansible
as limited as possible, to allow eventual replacement.

• Most services will only need an extremely simple Ansible role to generate
the service configuration, normally a mix of template and copy tasks, which
are possibly the most basic functionality of any configuration management
system. This should guarantee a certain ease of portability to other mecha-
nisms, should one decide to migrate away from float. Besides, it is a good
sanity check: if your service requires complicated setup steps, perhaps
it might be possible to move some of that complexity inside the service
containers.

To emphasize portability, it might be wise to adhere to the following rules when
writing Ansible roles:

• Try to use only copy, file and template tasks, rather than complex Ansible
modules;

• avoid using complex conditional logic or loops in your Ansible tasks
• keep the configuration "local" to the service: do not reference other services

except using the proper service discovery APIs (DNS), do not try to look
up configuration attributes for other services (instead make those into
global configuration variables);

• do not use facts from other hosts that need to be discovered (these break
if you are not using a fact cache when doing partial runs): instead, define
whatever host attributes you need, explicitly, in the inventory;

More generally, the integration with Ansible as the underlying configuration
management engine is the "escape hatch" that allows the implemention of setups
that are not explicitly modeled by float itself.

Infrastructure Part 1: Base Layer
We can subdivide what is done by float in two separate sections: operations
and services affecting every host, the so-called "base" layer of infrastructure, and
then the fundamental services that are part of the "cluster-level" infrastructure
(logging, monitoring, authentication, etc): the latter are part of float but run on
the base layer itself as proper services, with their own descriptions and Ansible
roles to configure them.

Note that, in its default setup, float will naturally assume a two-tier service
topology, with "frontend" hosts handling traffic routing in a stateless fashion,
and "backend" hosts running the actual services. The default services.default.yml

12

service description file literally expects the frontend and backend Ansible groups
to be defined in your inventory. However, these are just roles, and there is
nothing inherent in float that limits you to this kind of topology.

Service Discovery
"How do services find and talk to each other" is a fundamental aspect of any
infrastructural platform. Float offers the following features:

• The ability to set up overlay networks to isolate service-to-service traffic
from the public Internet.

• Services find each other with DNS A / AAAA lookups, so the client must
know the target port. As a consequence, each service must use a globally
unique port. This also implies that it’s impossible to schedule more than
one instance of a service on each host.

• DNS views are used to provide topology-aware service resolution, so that
hosts sharing a network overlay will route service requests over that net-
work.

• Connections between services are direct, not mediated by proxies, so there
is no global load balancing and clients are expected to keep track of the
state of backends and implement retry policies.

• Services can securely authenticate each other by using credentials auto-
matically provided by the service mesh.

Float’s implementation of this mechanism is extremely trivial and it is based on
writing static entries to /etc/hosts. It is fundamentally limited in the number of
services and hosts it can support.

Naming

Services are identified by their name, an alphanumeric string (it can also include
dash ’-’ characters).

All DNS entries are served under an internal domain domain.

Every host has its own view of the DNS map. The specific IP addresses associated
with a target service instance will depend on whether the source and target host
share any network overlays, which will be used in preference to the public IP
address of the backend host.

Locating service backends

The access patterns to backends of a distributed service vary depending on the
service itself: for instance, with services that are replicated for high-availability,
the client usually does not care which backend it talks to. In other cases, such
as with partitioned services, clients need to identify individual backends.

We provide three ways of discovering the IP address of service backends. The
port must be known and fixed at the application level.

13

Note that in all cases, the DNS map returns the configured state of the services,
regardless of their health. It is up to the client to keep track of the availability
status of the individual backends.

All backends The DNS name for service.domain results in a response con-
taining the IP addresses of all configured backends for service.

$ getent hosts myservice.mydomain
1.2.3.4
2.3.4.5
3.4.5.6

Note that due to limitations of the DNS protocol, not all backends may be
discovered this way. It is however expected that a sufficient number of them will
be returned in the DNS response to make high availability applications possible.
If you need the full list of instances, it is best to obtain it at configuration time
via Ansible.

Individual backends Each service instance has a name that identifies it
specifically, obtained by prepending the (short) host name to the service name:

$ getent hosts host1.myservice.mydomain
1.2.3.4

This is the hostname that the instance should use to advertise itself to its peers,
if the service requires it.

Shards Backends can also have permanent shard identifiers, that identify a
specific backend host, and that do not change on reschedules. These are useful
when a service is partitioned across multiple backends and the hosts have state
or data associated with it. A shard identifier is an alphanumeric literal, specific
to the host.

$ getent hosts shard1.myservice.mydomain
1.2.3.4

Master-elected services When a service uses master election, an instance is
automatically picked at configuration time to be the master of the service. This
instance will be discoverable along with the other instances when resolving the
service name. In addition, the special DNS name service-master.domain will
point at it:

$ getent hosts myservice-master.mydomain
2.3.4.5

14

Network Overlay
It is possible to define internal networks that span multiple hosts, called overlays,
which can then be used for service-to-service traffic, ignoring the details of the
actual underlying public network topology.

For now, only a single IPv4 address can be assigned to a host on each private
network. In the future, it should be possible to assign an entire subnet, so that
individual IPs will be available to services.

The list of network overlays is part of the global float configuration, and to make
a host participate in a network one should simply define a ip_<network-name>
attribute for that host in the Ansible inventory, whose value should be the desired
IP address.

The current implementation of private networking uses tinc and sets up a fully
connected mesh between participating hosts. The result is robust and has limited
performance overhead.

When the client and server hosts are on the same private network, the DNS-
based service discovery will return the server’s address on that private network,
ensuring that service-to-service communication goes over the VPN.

Traffic Routing
While it’s possible to configure it to do otherwise, float assumes that your services
will run on its isolated, internal private networks, and it provides a mechanism to
expose them publicly and route external traffic to the correct backend processes.

In the expected setup, one or more hosts should be dedicated to running the
built-in frontend service (usually by setting up a host group and setting the
service scheduling_group accordingly). Such hosts will have their public IP
addresses advertised to the world via DNS. The frontend service runs a set of
request routers, or reverse proxies (NGINX and HAproxy), to route requests to
the correct service backends.

High-level traffic flow

Float uses a basic two-tier model for serving requests, with a reverse proxy
layer between users and the backend applications. Traffic to the reverse proxies
themselves (hosts running the frontend service) is controlled via DNS: float
automatically creates low-TTL DNS records for its public endpoints. This has
all the usual caveats of using DNS for this purpose, and it isn’t really meant as
a precise load-balancing layer.

Reliability is then provided by having multiple backends for the application itself:
the reverse proxies will find one that works. It is important to note that, at
the moment, float provides no accurate load-balancing whatsoever, just basic
round-robin or random-selection: in NGINX, proper load balancing mechanisms
are a paid feature.

15

https://www.tinc-vpn.org/

HTTP

The infrastructure provides a way for HTTP-based services to expose themselves
to the public Internet by defining public endpoints. The public HTTP router
(NGINX) will be automatically configured based on such service metadata.

The clients of this service are users (or generically, external clients), not other
services, which should instead talk directly to each other.

The public HTTP router will force all incoming requests to HTTPS.

For implementation details, see the nginx Ansible role README.

SSL Certificates

Float will automatically generate SSL certificates for the required public domain
names. However, on first install, to ensure that NGINX can start while the ACME
automation acquires the valid certificates, it will set up self-signed certificates,
and switch to the ACME ones when they are available.

HTTP Cache

A global HTTP cache is available for services that require it.

NGINX will set the X-Cache-Status header on responses, so you can check if the
response was cached or not.

The cache TTL is low (10 minutes), and there is currently no mechanism to
explicitly purge the cache.

Controlling incoming HTTP traffic

The public HTTP router offers the possibility to block incoming requests based
on their User-Agent (to ban bots, etc), or based on the URL they are trying to
access. The latter is often required for regulatory compliance.

There is documentation of this functionality in the README files below the
roles/float-infra-nginx/templates/config/block/ directory.

Non-HTTP

It is also possible to route arbitrary TCP traffic from the frontend hosts to
the service backends. In this case, the proxy will not terminate SSL traffic
or otherwise manipulate the request. The original client IP address will be
unavailable to the service.

Define public_tcp_endpoints for a service to enable this feature.

Note that there is no functionality for reverse proxying UDP services: in this
scenario you are probably better off scheduling your UDP service directly on

16

../roles/float-infra-nginx/README.md

the frontend group (or use a different group altogether and take care of DNS
manually).

Public DNS
Float offers authoritative DNS service, it is part of the frontend service so it will
run on the same hosts as the HTTP reverse proxies.

DNS entries are automatically generated for all known public_endpoints, as well
as for the "public" domains in domain_public.

The DNS server is currently Bind, and is itself configured via an intermediate
YAML-based language that supports templates and inheritance called zonetool.

There is the option of configuring DNSSEC (TODO: add docs).

Customizing DNS

If you want to set up a custom DNS zone, one way to do so is with a dedicated
Ansible role (to be run on hosts in the frontend group) that installs your desired
zonetool configuration.

Let’s walk through a complete example: suppose we have a service myservice
that should serve HTTP requests for the myservice.org domain. This doesn’t
match the service_name.domain scheme that is expected for services described
in services.yml, so float won’t automatically generate its DNS configuration.

What we need to do is set up the myservice.org DNS zone ourselves, and then
tell float to associate that domain to the myservice service.

First, we create a new Ansible role that we are going to call myservice-dns, so in
the root of your Ansible config:

$ mkdir -p roles/myservice-dns/{handlers,tasks,templates}

The only task in the role should install a zonetool DNS configuration file into
/etc/dns/manual, so in roles/myservice-dns/tasks/main.yml we’ll have:

- name: Install myservice DNS configuration
template:

src: myservice.yml.j2
dest: /etc/dns/manual/myservice.yml

notify: reload DNS

The DNS configuration in our case is very simple and just points "www" and the
top-level domain at the frontends. We do so by extending the @base zone template
defined by float. The contents of roles/myservice-dns/templates/myservice.yml.j2
should be:

17

https://git.autistici.org/ai3/tools/zonetool

myservice.org:
EXTENDS: "@base"
www: CNAME www.{{ domain_public[0] }}.

This points the www domain at the frontends via a CNAME (all the do-
main_public DNS zones are already autogenerated by float). We could have just
as easily used A records but this is simpler and works with both IPv4 and IPv6.

The @base template already adds NS records (pointing at the frontend hosts
where the DNS servers are), and A records for the unqualified zone name

Finally, we need a handler to reload the updated DNS configuration, which goes
in roles/myservice-dns/handlers/main.yml and runs a shell command to update
zonetool:

- listen: reload DNS
shell: "/usr/sbin/update-dns && rndc reload"

With the above we have a complete Ansible role that configures DNS for the
myservice.org domain. We need to tell Ansible that this role needs to run on the
hosts in the frontend group, so in your playbook you should have:

- hosts: frontend
roles:

- myservice-dns

And to complete our configuration, the service description for myservice should
have a public_endpoint directive including the domain, so that the float HTTP
router knows where to send the requests:

myservice:
...
public_endpoints:

- name: myservice
domains:

- www.myservice.org
- myservice.org

port: ...

While the above is sufficient to have the float DNS servers serve authoritative
records for the zone, you also have to ensure that the servers are properly plugged
in to the global DNS service. How to do so depends on many details specific of
each situation, and is beyond the scope of float, however it generally involves
(assuming your float infrastructure has example.com as domain_public, and you
want to serve myservice.org as in the examples above):

18

• Having at least 2 hosts in the frontend group. Float will automatically
create A records for ns1.example.com, ns2.example.com, etc.

• Setting the nameserver records of myservice.org with the domain registrar
to ns1.example.com and, say, ns2.example.com.

• Eventually adding glue A records, at the domain registrar, with the IP
addresses for ns1.example.com and ns2.example.com.

SSL
The internal ACME service continuously monitors the configured list of public
domains and attempts to create or renew valid SSL certificates for them using
Letsencrypt. It is integrated with the HTTP reverse proxy, so it will use the http-
01 ACME validation protocol, meaning that it is only able to create certificates
for domains that have an A record pointing to float’s frontend hosts.

To prevent issues with starting up daemons and missing certificates, float will at
first generate placeholder self-signed certificates, so that services can use them
even before the ACME automation has had a chance to create valid ones.

The certificates created by the ACME service are then replicated to all frontend
hosts via the replds daemon, eventually ending up in the /etc/credentials/public
directory.

If a service that is not running on the frontend hosts needs access to the
certificates, it can do so by depending on the float-infra-acme-storage role, e.g.:

roles/myservice/meta/main.yml

dependencies:

- {role: float-infra-acme-storage}

which will again ensure that the SSL certificates are present on the local host’s
/etc/credentials/public directory.

Access to the SSL certificates is controlled by membership in the public-credentials
UNIX group.

If a service needs to be reloaded when its certificates change, it should install a
shell script hook in the /etc/acme-storage/reload-hooks directory. This script
will be invoked every time any certificate changes, which is why the script should
inspect whether the specific certificate it cares about has changed or not (possibly
using something like the if-changed tool), to avoid excessive reloads:

#!/bin/sh
if-changed /etc/credentials/public/my.dom.ain/ \

&& systemctl restart myservice
exit 0

19

https://git.autistici.org/ai3/acmeserver
https://git.autistici.org/ai3/tools/replds

Generating additional SSL certificates

To customize the ACME server configuration, use a dedicated Ansible role that
runs on the same group as the acme service, and dump a configuration file in
/etc/acme/certs.d:

roles/myservice-acme/tasks/main.yml

- name: Configure ACME for my custom domain
copy:

dest: /etc/acme/certs.d/mydomain.yml
content: |

- names:
- "my.dom.ain"

playbook.yml

- hosts: acme
roles:

- myservice-acme

SSH
Float can take over the SSH configuration of the managed hosts, and perform
the following tasks:

• create a SSH Certification Authority
• sign the SSH host keys of all hosts with that CA
• add all the admin users’ ssh_keys to the authorized_key list for the root

user on all hosts.

The underlying access model is very simple and expects admins to log in as root
in order to run Ansible, so you’ll most likely want to set ansible_user=root and
ansible_become=false in your config as well.

Keys used for login will be logged in the audit log, so you can still tell admins
apart.

SSH Host Certificates

SSH host certificates contain a list of one or more principals, or names. For
SSH CA validation to work correctly, that list should include the name used to
connect to the host. But float doesn’t really have an opinion on what public
DNS names your hosts have: it only knows about the Ansible inventory! So in
order to control the generation of SSH host certificate principals, it is possible
to set the ssh_host_key_principal variable to a pattern that makes sense for
your production environment. By default this is:

{{ inventory_hostname }}.{{ domain }}

20

which generates fully-qualified names on the internal zone. These won’t be
generated by float, and are likely not to exist, so you’ll want to change this
to something that matches your environment. The ssh_host_key_principal
variable can of course also be set on a host-by-host basis, in the inventory.

SSH Client Setup

You will find the public key for this CA in the credentials/ssh/key.pub file, it
will be created the first time you run the init-credentials playbook.

Assuming that all your target hosts share the same domain (so you can use a
wildcard), you should add the following entry to ~/.ssh/known_hosts:

@cert-authority *.example.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAA....

Since all logins happen as root, it may be convenient to also add a section to
your ~/.ssh/config file like the following:

Host *.example.com
User root

Integrating base services with other automation
Most float services that deal with config-driven autogenerated configurations
support integrating with other, presumably service-driven, types of automation.

Consider, for example, the case of a platform for user web hosting: the main
HTTP traffic routing infrastructure has to be extended with the configuration
for all the user domains, which presumably comes out of a database somewhere.

In order to support such integration, services such as the HTTP router, DNS,
ACME, and others, will also read their configurations from an auto directory
(such as /etc/nginx/sites-auto for example), which is not managed by float at all
and that can be delegated to the external automation.

Infrastructure Part 2: Cluster Services
Authentication and Identity
The float infrastructure provides a full AAA solution that is used by all the
built-in services, and that can be easily integrated with your services (or at
least that would be the intention). It aims to implement modern solutions, and
support moderately complex scenarios, while keeping things as simple as possible
-- an area that could still see some improvement. It offers the following features:

• supports users and groups (mostly admins and eventually users)
• supports multiple backends (file, LDAP, SQL, ...)
• mechanisms for account recovery (currently poor, via secondary password,

other mechanisms should be implemented)

21

• transparent upgrade of password hashing mechanisms (for future-proofing)
(somewhat TODO)

• single sign-on for HTTP services
• TOTP and U2F authentication mechanisms for HTTP services
• supports passwords tied to specific services (wrongly called application-

specific) for non-HTTP services
• manages secrets (encryption keys) encrypted with the user password, in a

way that works even over single sign-on
• supports partitioned services
• configurable rate limits and blacklists for brute-force protection
• tracks logins and user devices without storing PII
• it is modular, and can be adapted to the desired scale / shape

However it is important to note that it comes with a very long list of caveats as
well:

• the single sign-on system is implemented with bearer tokens (signed HTTP
cookies), which have numerous weaknesses, even if one ignores the possible
implementation failures:

– bearer tokens are vulnerable to exfiltration (in logs, in user browser
histories, caches, etc.), which can be partially mitigated by short
token lifetimes

– logout is a somewhat ill-defined operation (the current implementation
relies on borderline-adtech techniques in order to delete cookies on
other services’ domains)

– they rely on a complex chain of HTTP redirects and HTTP headers
being set in the right place

Most of these features do not have immediate use in the basic services built-in
into the infrastructure, but they are meant instead for the primary use case for
float: the implementation of a large-ish email and hosting provider.

It should therefore be clear that the chosen design involves numerous trade-offs,
some of which we have tried to document here, that are tailored to the above
use case, and might very well not be suitable to your particular scenario.

In float, the primary user authentication database is provided via a global
variable in your Ansible configuration and controls access to the internal web-
based services that are behind single sign-on.

Authentication

All credentials-based authentication (passwords, OTP, U2F) goes through the
main authentication daemon auth-server. It translates authentication requests,
containing service name, user name, password, and other authentication param-
eters, into database requests to retrieve the authentication primaries and verify
them.

An authentication response has one of three possible states: failure, success,

22

https://git.autistici.org/id/auth

and the request for further authentication with a second factor (OTP or U2F,
in which case the response will also contain U2F challenge parameters). On
a successful response, the auth-server might return additional data such as an
email address. The auth-server listens on a UNIX socket, so it usually runs on
all machines, and speaks a simple line-based protocol. There is also a PAM
module available to help integrate your services.

Database lookup queries can be configured separately for each supported service,
along with a number of other parameters.

The default setup in float uses a file-based backend for administrator accounts
(in the admin group), and eventually a LDAP database for user accounts (LDAP
was a requirement of the main float use case, SQL support should be added
instead).

The auth-server can log authentication events and the associated client and
device information to long-term storage, and it can detect anomalies and take
action (the standard use case is "send an email when you see a login from a new
device").

Why not PAM? PAM is not exactly a nice interface, furthermore it isn’t exactly
easy to pass arbitrary information through its conversation API (required for
OTP/U2F). Furthermore, there are many advantages in using a standalone
authentication server: centralization of rate limits across different services, a
single point for logging, auditing and monitoring, and a single ownership of
database authorization credentials.

References

• git.autistici.org/id/auth, the main auth-server code.
• git.autistici.org/id/usermetadb, a privacy-preserving long-term user-

focused audit data store (lots of words for a SQL database with a simple
API).

Single sign-on

The single sign-on functionality is implemented using sso, a very simple scheme
based on Ed25519 signatures. The SSO functionality is split between a bunch of
libraries that implement token validation for various languages and environments
(including a PAM library and an Apache module), and a server that handles all
the HTTP authentication workflows. For simplicity, this server also serves the
login page itself.

Why not SAML, or any of the other SSO technologies available? Well, first of all
nothing fit exactly the "simplicity" requirement... (and most of the client SAML
libraries available are somewhat awful) but in the end what we have isn’t very
different from SAML, except without all the XML and weird enterprise edge
cases.

References

23

https://git.autistici.org/id/auth-pam
https://git.autistici.org/id/auth-pam
https://git.autistici.org/id/auth
https://git.autistici.org/id/usermetadb
https://git.autistici.org/ai/sso

• git.autistici.org/ai/sso original C implementation and design reference,
Python bindings, PAM / Apache2 modules.

• git.autistici.org/id/go-sso SSO server and SSO proxy implementation.
• the sso-server role README has details about the Ansible configuration

of SSO parameters.

User-encrypted secrets

There is functionality to maintain a secret associated with every user, usually
a private key used for encrypting user data, in such a way that it can only be
decrypted by the user itself, using the password (or any other equivalent form of
authentication primary).

The implementation maintains a number of copies of the encrypted password, each
encrypted with one of the authentication primaries: the user’s main password,
the secondary password used for recovery, and the various application-specific
passwords if present. This way, each service that successfully authenticates the
user can immediately decrypt the secret by trying all the available encrypted
secrets with the password it has.

Single sign-on integration is provided by a dedicated service that decrypts keys
when the user initially logs in on the SSO server (the only time in the SSO
workflow when we have access to the password), and keeps it around until the
login expires.

References

• git.autistici.org/id/keystore, the key storage service, includes a dedicated
Dovecot dict proxy interface (Dovecot is the primary use case for the
encrypted secrets feature).

Authentication workflows

In this section we try to document step-by-step the various authentication
workflows, to illustrate the interactions between the various authentication-
related services described above.

24

https://git.autistici.org/ai/sso
https://git.autistici.org/id/go-sso
../roles/float-infra-sso-server/README.md
https://git.autistici.org/id/keystore

Single sign-on

1. The first time a user connects to service1, it is redirected to the IP (identity
provider).

2. The IP handles the authentication UX (form with username and password,
OTP, U2F, etc).

3. The IP verifies the credentials with the authentication server.
4. The authentication server verifies the credentials against what is in the

database. If the credentials are good but incomplete (i.e. we have the right
password but no 2FA), go back to step 2 and ask for the second factor.

5. The IP uses the user password to unlock the user’s key by calling the
keystore service.

6. The keystore fetches the key from the database, decrypts it, and caches it
in memory.

When the SSO token for service1 expires, and the user is once again redirected
back to the IP, the identity provider can skip the authentication process (if it
recognizes the user) and simply create a new valid token straight away. This
process is transparent to the user (well, for GET requests at least).

Non-HTTP service login Let’s take dovecot as an example of a non-HTTP
service.

25

1. The user connects to dovecot using an IMAP client. The client sends
credentials that look like a password, which are either:

• the user’s primary password (for users without 2FA), or
• a service-specific password valid for the dovecot service

2. Dovecot verifies the credentials with the authentication server, using PAM
(dovecot supports many ways to plug in a custom authentication protocol,
PAM is just one of them).

3. The authentication server verifies the credentials against what is in the
database. There is no support for "incomplete" credentials here because
the IMAP protocol is not conversational.

4. Dovecot fetches the (decrypted) user encryption key from keylookupd,
sending it the credentials used in the IMAP login. It will keep this key in

26

memory for the duration of the IMAP connection.
5. Keylookupd fetches the (encrypted) user encryption key from the database

and decrypts it using the credentials.

Third-party service authentication Let’s examine a more complex interac-
tion, where a HTTP-based service (roundcube, a webmail application) needs to
access internally a different service (dovecot, in order to read the user’s email).

27

1. The user has a valid SSO token for the roundcube service, and connects to
the roundcube web application.

2. Roundcube exchanges the user SSO token for another one that is valid
for the dovecot service, by using the "exchange" API of the IP (identity
provider).

3. The IP verifies that the roundcube SSO token is valid, and that the

28

roundcube -> dovecot transition is authorized (via a whitelist). It signs a
new token for the same user with the new service "dovecot".

4. Roundcube talks to dovecot and logs in on behalf of the user providing
this new SSO token as the password.

5. Dovecot verifies that the username and SSO token are valid (using
pam_sso), and retrieves the (decrypted) user encryption key from the
keystore.

6. The keystore already has the (decrypted) user encryption key cached in
memory because at some point in time before accessing the roundcube web
application, the user has logged in to the IP, which has unlocked the key
in keystore (see the "single sign-on" workflow description above, step 6).

Monitoring
Float provides Prometheus as its monitoring service, and it will automatically
configure it to scrape your services for metrics if this information is provided in
the service metadata.

It comes with a pre-defined set of rules and alerts that should catch major
problems with the services running on the float infrastructure, though it is
advisable to add higher-level application-specific criteria to better capture the
specific characteristics of your services.

Prometheus runs as the prometheus service (in the default service configuration)
and associated Ansible role. The service is set up in such a way to easily and
unobtrusively scale along with your infrastructure:

• it is possible to run multiple instances of the main prometheus service, for
reliability purposes. Float uses Thanos to transparently aggregate results
from multiple instances.

• it is possible to separate short-term and long-term metrics storage by
using the prometheus-lts service to scrape the other Prometheus instances
and retain metrics long term. The Thanos layer will again transparently
support this configuration. See the Scaling up the monitoring infrastructure
section below for details.

Monitoring dashboards are provided by Grafana.

Customizing alerts

A few alerting rules are provided by default in roles/float-infra-prometheus/
templates/rules/. This includes:

• host-level alerts (high CPU usage, disk full, network errors...)
• service failures (systemd services down, or crash-looping)
• HTTP errors on public_endpoints

To add your own alerts, you may want to create your own Ansible role with
the necessary rule and alert files, and schedule it to execute on hosts in the

29

https://thanos.io
roles/float-infra-prometheus/templates/rules/
roles/float-infra-prometheus/templates/rules/

prometheus group, e.g.:

roles/my-alerts/tasks/main.yml

- name: Install my alerts
template:

src: "{{ item }}"
dest: "/etc/prometheus/rules/"
variable_start_string: "[["
variable_end_string: "]]"

with_fileglob:
- templates/rules/*.conf.yml

notify: "reload prometheus"

roles/my-alerts/handlers/main.yml

- name: reload prometheus
uri:

url: "http://localhost:9090/-/reload"
method: POST

ignore_errors: true
listen: "reload prometheus"

playbook.yml

- hosts: prometheus
roles:

- my-alerts

and your custom rules / alerts would be in roles/my-alerts/templates/rules/.

The alertmanager configuration expects some common labels to be set on your
alerts in order to apply its inhibition hierarchy (and make alerting less noisy):

• severity should be set to one of warn (no notification) or page
• scope should be one of host (for prober-based alerts), instance (for all

other targets), or global.

Scaling up the monitoring infrastructure

Float upholds the philosophy that collecting lots and lots of metrics is actually
a good thing, because it enables post-facto diagnosis of issues. However, even
with relatively small numbers of services and machines, the amount of timeseries
data that needs to be stored will grow very quickly.

Float allows you to split the monitoring data collection into two logical "parts"
(which themselves can consist of multiple identical instances for redundancy
purposes), let’s call them environments to avoid overloading the term instance:

• A short-term Prometheus environment that scrapes all the service targets
with high frequency, evaluates alerts, but has a short retention time (hours

30

/ days, depending on storage requirements). Storage requirements for this
environment are bounded, for a given set of services and targets.

• A long-term Prometheus environment that scrapes data from the short-
term environment, with a lower frequency, and discarding high-cardinality
metrics for which we have aggregates. The storage requirement grows
much more slowly over time than the short-term environment. Float calls
this service prometheus-lts (long-term storage).

This effectively implements a two-tiered (high-resolution / low-resolution) time-
series database, which is then reconciled transparently when querying through
the Thanos service layer.

To enable long-term metrics storage, include services.prometheus-lts.yml in your
service definitions, and add the corresponding playbooks/prometheus-lts.yml
playbook to your own.

You will also need to set prometheus_tsdb_retention and prometheus_lts_tsdb_retention
variables appropriately.

Adding external targets

Since float provides a reasonably good monitoring and alerting platform, it might
make sense to consolidate other sources of monitoring data into it: for example
services and hosts that are not managed by float.

Float’s Prometheus configuration supports three different types of additional,
external targets:

• Simple targets, for scraping metrics, configured via the prometheus_external_targets
global variable.

• External Prometheus instances, configured via prometheus_federated_targets:
in Prometheus, federation implies that the target’s labels are imported
as-is. This is the correct way to build hierarchies of Prometheus instances.

• Blackbox probers, which collect report metrics about other services, con-
figured via prometheus_additional_blackbox_probers; these require special
handling, discussed in the following section.

Adding blackbox probes

The default float monitoring stack includes a Prometheus blackbox exporter
(the standard terminology gets slightly confusing here, we’re going to call it
"prober"), which runs a minimal set of probes to assess host reachability, and
the availability of some critical infrastructure services (HTTP, DNS).

For proper blackbox monitoring coverage of your services, you will most likely
need to run additional probes. Since the prober configuration is fairly complex
and necessarily service-specific, the best way to do so is just to run additional
blackbox prober services, with your custom configuration. You can even re-use
float’s blackbox-exporter container image:

31

services.yml

my-prober:
num_instances: 2
containers:

- name: blackbox
image: registry.git.autistici.org/ai3/docker/prometheus-blackbox:master
ports:

- 9125
volumes:

- /etc/my-prober: /etc/prometheus
args: "--web.listen-address=:9125 --config.file /etc/prometheus/blackbox.yml"
docker_options: "--cap-add=NET_RAW"
drop_capabilities: false

public_endpoints:
- name: my-prober

port: 9125
scheme: http
enable_sso_proxy: true

ports:
- 9125

roles/my-prober/tasks/main.yml (service reload omitted for brevity)

- name: Create my-prober configuration dir
file:

path: "/etc/my-prober"
state: directory

- name: Configure my-prober
template:

src: "blackbox.yml.j2"
dest: "/etc/my-prober/blackbox.yml"

roles/my-prober/templates/blackbox.yml.j2 (the following is just a trivial exam-
ple, this will contain the service-specific prober configuration relevant for your
services)

modules:
http_2xx:

prober: http

playbook.yml (note that the Ansible group name is normalized to my_prober)

- hosts: my_prober
roles:

- my-prober

Prober jobs however require a different scraping configuration in Prometheus:
the metrics exported by these jobs refer to other services, rather than being

32

about the prober job itself. The labels on these metrics need to be rewritten in
order to account for this. Furthermore, in Prometheus, the blackbox exporter
configuration does not include the list of targets to probe: these are specified in
the Prometheus configuration instead, and passed to the job as URL parameters
in the scraping request. Finally, the semantics of prober "targets" are specific to
each probe: a prober target could be a host:port, a URL, etc.

This information is passed to float’s Prometheus instance via the
prometheus_additional_blackbox_probers configuration variable, a list of
dictionaries representing the configuration of individual probes. For every probe,
the following information needs to be provided:

• a unique name to identify the probe (name): this must be unique across
your whole float configuration.

• which float service to scrape (this would be the prober service), and also
on which port (service and port attributes)

• a list of targets for the probes, which can be either:
– a manual list, useful for external, non-float-managed services
– another float service; in this case, you specify a target_service and a

target_regex : float takes the list of hosts assigned to the target_service
and applies the regex to obtain the final targets (the target hostname
can be referred to as \\1). The attribute target_label_regex can be
used to specify a regex (with a capture group) to extract back the
host name from the target; the default regex will extract the short
host name from URLs and host:port targets.

• (optionally) a scrape_interval if for some reason it should be different than
the default prometheus_probe_scrape_interval.

So, in the context of the previous example, if we wanted to probe another float
service called myservice, which hypothetically serves HTTP content on port
2020, we would add this to an Ansible configuration in group_vars:

group_vars/all/custom-monitoring.yml

prometheus_additional_blackbox_probers:
- name: http_myservice

service: my-prober
port: 9125
target_service: myservice
target_regex: "http://\\1:2020"

Customizing alert timeouts for additional blackbox probes

The Prometheus configuration for the default float blackbox probes is appropri-
ate for high-frequency, high-accuracy probes (with 10s polling and a 5m alert
timeout). This is not going to be appropriate for all use cases, such as more
complex probes that require less frequent polling.

Float provides a way to configure alert timeouts on a prober (i.e. float service)

33

basis, by using the optional prober_alert_timeout attribute in the service de-
scription metadata. For instance, to set a 30 minute alert timeout in the context
of the previous example, the services.yml file should be modified:

my-prober:
...
prober_alert_timeout: 30m

Log Collection and Analysis
Logs are forwarded by all machines to a set of (one or more) log-collector
instances. These log-collector instances receive logs over syslog/tcp (with SSL)
and store them locally for search and aggregation purposes.

Logs are only written to disk in the centralized collector, all process logs are
gathered by journald (which stores them in memory). Anonymization is also
performed centrally on the collector, so that only anonymized logs are ever
persisted to disk.

Log types

There are three main log types at the moment, though more might be added:

• Standard syslog logs
• HTTP logs, generated in a specific format (an extension of the Apache

Combined Log format) by our NGINX front-ends, which use the syslog
facility local3, exclusively dedicated to this purpose

• structured logs, which are generated by applications in CEE/lumberjack
format (simply a JSON dictionary prepended by the literal string @cee:).

Metric extraction

It is often useful to extract real-time metrics from logs, most often when dealing
with software that does not export its own metrics. An example is NGINX,
where logs are parsed in order to compute real-time access metrics. Float runs
an instance of mtail on every host to process the local logs and compute metrics
based on them.

Custom rules can be added simply by dropping mtail programs in /etc/mtail.
This would generally be done by the relevant service-specific Ansible role.

Metadata extraction

Syslog logs received by the log-collector will be subject to further processing
in order to extract metadata fields that will be stored and indexed. Metadata
extracted from logs is useful for searching and filtering, even though those cases
are already well served by full-text search (or grep), and most importantly for
aggregation purposes: these can be either used for visualizations (dashboards),

34

https://www.rsyslog.com/doc/v8-stable/configuration/modules/mmjsonparse.html
https://www.rsyslog.com/doc/v8-stable/configuration/modules/mmjsonparse.html
https://github.com/google/mtail

or for analytical queries, that would be difficult to answer using the coarse view
provided by monitoring metrics.

Perhaps it’s best to make an example to better illustrate the relation between
metadata-annotated logs and monitoring metrics, especially log-derived ones,
which are obviously related being derived from the same source. Let’s consider
the canonical example of the HTTP access logs of a website which is having
problems: the monitoring system can tell which fraction of the incoming requests
is returning, say, an error 500, while properly annotated logs can answer more
detailed queries such as "the list of top 10 URLs that have returned an error
500 in the last day". The extremely large cardinality of the URL field (which is
user-controlled) makes it too impractical to use for monitoring purposes, but the
monitoring metric is cheap to compute and easy to alert on in real-time, while
the metadata-annotated logs provide us with the (detailed, but more expensive
to compute) analytical view.

The implementation uses the mmnormalize rsyslog module, which parses logs
with the liblognorm engine to extract metadata fields.

Liblognorm rulebase files are a bit verbose but relatively simple to write. Rules
can be manually tested using the lognormalizer utility, part of the liblognorm-utils
Debian package.

Additional rules should be dropped in the /etc/rsyslog-collector-lognorm/ direc-
tory of the hosts where the log-collector service is running, via a custom Ansible
role:

roles/my-lognorm/tasks/main.yml

- copy:
src: rules/
dest: /etc/rsyslog-collector-lognorm/

playbook.yml

- hosts: log_collector
roles:

- my-lognorm

assuming roles/my-lognorm/files/rules/... would contain your lognorm rules.

Technical implementation details

The logging stack on each individual machine looks like the following:

• The local rsyslogd collects logs from the systemd journal and the default
syslog socket, and sends logs to the centralized log collectors.

• It also runs a mtail instance on the local log stream, scraped by the
monitoring system, allowing us to derive custom metrics from logs.

35

https://www.rsyslog.com/doc/v8-stable/configuration/modules/mmnormalize.html
http://www.liblognorm.com/files/manual/index.html

The log-collector instances run a minimalistic ELK-like stack, where Logstash
has been removed and its functionality reproduced in rsyslogd itself:

• A separate instance of rsyslogd listens for incoming logs on port 6514 (the
standard syslog-tls service), and forwards logs, after some processing, to
Elasticsearch.

• Elasticsearch stores logs on the local disk.
• Kibana is used to provide a web query front-end to the archived logs, in

addition to the logcat command-line tool.

The structure of Elasticsearch indexes match what would have been produced
by Logstash (and what is expected by Kibana), with daily indexes. Float uses
the following index types:

• logstash-* for all standard syslog / journald logs
• http-* for HTTP accesses to the frontend reverse proxies
• audit-* for audit logs, which usually have a longer retention

We use Elasticsearch index templates (in roles/float-infra-log-collector/templates/elasticsearch/templates)

36

to optimize the schema a bit, disabling indexing on problematic fields, and
setting sane replication options.

Configuration
Float is an Ansible plugin with its own configuration, that replaces the
native Ansible inventory configuration. You will still be running Ansible
(ansible-playbook or whatever frontend you prefer) in order to apply your
configuration to your production environment. Float only provides its own roles
and plugins, but it does not interfere with the rest of the Ansible configuration:
playbooks, host and group variables, etc. which will have to be present for a
functional setup.

The toolkit configuration is split into two parts, the service description metadata,
containing definitions of the known services, and a host inventory, with informa-
tion about hosts and group (the same information you would have in a normal
Ansible inventory). A number of global Ansible variables are also required to
customize the infrastructure for your application.

All configuration files are YAML-encoded and should usually have a .yml exten-
sion.

Float is controlled by a top-level configuration file, which you should pass to the
ansible command-line tool as the inventory with the -i flag. This file mainly
consists of pointers to the more specific configuration files:

services_file: services.yml
passwords_file: passwords.yml
hosts_file: hosts.yml
credentials_dir: credentials/
plugin: float

This file must exist and it must contain at the very least the "plugin: float"
directive.

The attributes supported are:

services_file points at the location of the file containing the service metadata
definition, the default is services.yml.

hosts_file points at the location of the hosts inventory, the default being
hosts.yml.

passwords_file points at the configuration of the application credentials (pass-
words), with default passwords.yml.

credentials_dir points at the directory where autogenerated service-level
credentials (PKI-related) will be stored. This is often managed as a separate git
repository.

37

plugin must always have the literal value float.

Relative paths in float configuration files are interpreted as relative to the
configuration file being evaluated. Among other things, this results in the
possibility of using relative paths in include directives.

Inventory (hosts.yml)
The inventory file defines hosts and groups, and custom variables associated with
those. It’s just another way of defining an Ansible inventory that is easy for us
to inspect programatically.

The groups defined here can be used in your own Ansible playbook, but most
importantly are used in services.yml to make scheduling decisions (see Scheduling
below).

The inventory file must contain a dictionary encoded in YAML format. The
top-level attributes supported are:

hosts must contain a dictionary of name: attributes pairs defining all the hosts
in the inventory;

group_vars can contain a dictionary of group_name: attributes pairs that define
group variables.

Groups

While you can define any host groups you want, the default service configuration
in float (services.default.yml) expects you to define at least two:

• frontend, for the public-facing reverse proxy hosts
• backend, for hosts where the actual services will run

While nothing prevents a host from being in both (for instance if you are running
a single test host), or you from overriding the scheduling_group assignments in
the default service configuration. This default is a consequence of the fact that
the default service model is oriented towards a request-based two-tiered design.

Host variables

Variables can be Ansible variables: SSH parameters, etc., usually with an ansible_
prefix. But some host variables have special meaning for float:

ips (mandatory) is the list of IP addresses of this host that other hosts (i.e.
internal services) should use to reach it. You can specify one or more IP
addresses, IPv4 or IPv6. Note that this is a list. For legacy reasons, float still
also understands the ip (singular) attribute, which is expected to be a single
IPv4 address, but this support will eventually be retired, so on new inventories
you should use the ips list attribute.

38

public_ips (optional) is the list of IP addresses for this host that will be
advertised in the public-facing DNS zones. If unset it defaults to ips.

ip_<name> (optional) defines the IPv4 address for this host on the overlay
network called name. Note that as opposed to ips this is not a list but a single
IPv4 address.

groups (optional) is a list of Ansible groups that this host should be a member
of

resolver_mode (optional) controls the desired state of the host’s resolv.conf file.
The supported values are:

• ignore - do nothing and leave resolv.conf alone
• localhost - use localhost as a resolver, presumably some other role will have

installed a DNS cache there
• internal:NET - use the frontend hosts as resolvers, over the specified overlay

network named NET
• external - use Google Public DNS.

Note that due to ordering issues it is advised to set the resolver_mode attribute
on hosts only after the first setup is complete, to avoid breaking DNS resolution
while Ansible is running the first time.

Example

An example of a valid inventory file (for a hypotetic Vagrant environment):

hosts:
host1:

ansible_host: 192.168.10.10
ip: 192.168.10.10
groups: [frontend, vagrant]

host2:
ansible_host: 192.168.10.11
ip: 192.168.10.11
groups: [backend, vagrant]

group_vars:
vagrant:

ansible_become: true
ansible_user: vagrant
ansible_ssh_private_key_file: "~/.vagrant.d/insecure_private_key"

This defines two hosts (host1 and host2), both part of the vagrant group. Some
Ansible variables are defined, both at the host and the group level, to set
Vagrant-specific connection parameters.

39

Service metadata (services.yml)
The service metadata file (services.yml) is a dictionary encoded in YAML format,
where keys are service names and values contain the associated metadata. This
file is consumed by the static service scheduler that assigns services to hosts,
and by the Ansible automation in order to define configuration variables.

Service metadata is encoded as a dictionary of service name: service attributes
pairs, each defining a separate service.

Metadata for services that are part of the core infrastructure ships embedded
with this repository, so when writing your own services.yml file, you only
need to add your services to it. You should include the services.default.yml file
shipped with the float source, which defines all the built-in services:

include:
- "/path/to/float/services.default.yml"

The include directive is special: it does not define a service, but it expects a
list of other files to include, containing service definitions. These are evaluated
before the current file, and the results are merged, so it is possible to override
parts of an included service definition.

It is possible to override service metadata attributes defined in an included file,
for instance consider the following two files:

• base.yml

foo:
scheduling_group: foo-hosts
num_instances: 1

• services.yml

include:
- "base.yml"

foo:
num_instances: 2

The resulting foo service will have num_instances set to 2. Note that the merging
algorithm is trivial and it’s not possible to extend or modify a list (it can only
be overridden).

Since the service attributes are many, we’ll examine them grouped by major
area of functionality.

Scheduling

Attributes that control how a service is scheduled on the available hosts.

scheduling_group: Only schedule the service on hosts of the specified host
group. By default, schedule on all hosts. If one needs to specify multiple groups,

40

use the plural scheduling_groups variant of this attribute.

num_instances: Run a limited number of instances of the service (selected
among the hosts identified by the scheduling_group). By default this is set to
all, which will run an instance on every host.

master_election: If true, pick one of the hosts as master/leader (default is
false).

Credentials

Float creates a UNIX group to access each set of service-level credentials sepa-
rately, named credentials_name-credentials.

service_credentials: A list of dictionaries, one for each service credential
that should be generated for this service.

Each service_credentials object supports the following attributes:

name (mandatory): Name for this set of credentials, usually the same as the
service name. Certificates will be stored in a directory with this name below
/etc/credentials/x509.

enable_client: Whether to generate a client certificate (true by default).

client_cert_mode: Key usage bits to set on the client certificate. One of client,
server, or both, the default is client.

enable_server: Whether to generate a server certificate (true by default).

server_cert_mode: Key usage bits to set on the server certificate. One of client,
server or both, the default is server.

extra_san: Additional DNS domains to add as subjectAltName fields in the
generated server certificate. This should be a list. The internal domain name
will be appended to all entries.

Monitoring

monitoring_endpoints: List of monitoring endpoints exported by the service.

Each entry in the monitoring_endpoints list can have the following attributes:

port: Port where the /metrics endpoint is exported.

scheme: HTTP scheme for the service endpoint. The default is https.

healthcheck_http_method: HTTP method to use for checking job status. The
default is HEAD to query the endpoint without transferring all the metric data.
Not all endpoints support this method, so if the probe fails set it to a method
that it does support (worst case: GET).

metrics_path: Path for metrics if different from the default of /metrics.

41

labels: An optional dictionary of key/value labels to set for this target (they
will be added to all metrics scraped from it).

scrape_interval: Optionally override the scrape interval for this target.

The Prometheus job labels for service targets will be automatically generated by
float to include the service name and the endpoint port.

Traffic routing

Services can define public HTTP and TCP endpoints, that will be exported as
subdomains of the public domain name by the public traffic routing infrastructure.

Normally DNS entries and SSL certificates are created for all public endpoints.
This automation can be switched off by setting the skip_acme or skip_dns
attributes to true (if for some reason you need to customize these parts manually).

HTTP public_endpoints: List of HTTP endpoints exported by the service
that should be made available to end users via the service HTTP router.

All public_endpoints will be made available to public users under their own
subdomain of each domain_public (unless the domains attribute is used), over
HTTPS, on the default HTTPS port (443).

Entries in the public endpoints list can have the following attributes:

name: Public name of the service. This can be different from the service name, for
instance you might want to export the internal prometheus service as monitoring
under the user-facing external domain name. This name will be prepended to
each one of the domains listed in domain_public to obtain the public FQDNs to
use. Alternatively, you can define one or more domains.

domains: List of fully qualified server names for this endpoint, in alternative or
in addition to specifying a short name.

port: Port where the service is running.

scheme: HTTP scheme for the service endpoint. The default is https.

autoconfig: If False, disable generation of the NGINX configuration for this
host - it is assumed that some other automation will do it.

extra_nginx_config: Additional NGINX directives that should be included
(at the server level) in the generated configuration.

enable_sso_proxy: If true, place the service behind authentication using single
sign-on, allowing access only to administrators (members of the admins group).
This is quite useful for admin web interfaces of internal services that do not
support SSO integration of their own.

42

HTTP (All domains) horizontal_endpoints: List of HTTP endpoints
exported by the service, that should be made available to end users on all
domains served by the infrastructure - normally used for /.well-known/ paths
and such.

Entries can have the following attributes:

path: Path that should be routed to the service, e.g. /.well-known/something.
It should not end with a slash.

port: Port where the service is running.

scheme: HTTP scheme for the service endpoint. The default is http.

TCP public_tcp_endpoints: List of TCP endpoints to be publicly exported
by the service.

Entries in the public_tcp_endpoints list can have the following attributes, all
required:

name: Name of the endpoint.

port: Port where the service is running.

public_port: Port that should be exposed to the Internet. Defaults to port if
unset.

use_proxy_protocol: When true, enable the HAProxy proxy protocol for the
service, to propagate the original client IP to the backends.

Other endpoints Other endpoints are used when the service runs their own
reverse proxies, but we’d still like float to take care of generating DNS entries
and SSL certificates for it.

public_other_endpoints: List of other endpoints to be publicly exported by
the service.

Entries in the endpoints list can have the following attributes, all required:

name: Name of the endpoint.

Containers

containers: List of containerized instances that make up the service (for
container-based services).

Each entry in this list represents a containerized image to be run. Supported
attributes include:

name: Name of the container. It is possible to have containers with the same
name in different services.

image: Which Docker image to run.

43

port: Port exposed by the Docker image. It will be exposed on the host network
interface.

ports (in alternative to port): List of ports exposed by the Docker image. Use
when you need a list, in place of port.

docker_options: Additional options to be passed to the docker run command.

args: Arguments to be passed to the container entry point.

volumes: Map of source:target paths to bind-mount in the container. If the
source is literally tmpfs, we will mount a tmpfs filesystem (with a default size of
64MB) instead.

root (boolean, default: false): if set, the container will run as root, instead
of the dedicated service-level user. Enabling this option automatically sets
drop_capabilities to false.

drop_capabilities (boolean, default: true): if set, causes Docker to drop all
capabilities for this container. Otherwise, the capability set will be controlled by
systemd.

egress_policy (default: allow-all): selects the network egress policy for this
container. This allows broad control over network connections made by the
process running in the container, and it can take one of the following values:

• allow-all, allows all traffic
• internal, only allows traffic to float’s internal private networks (necessary

for containers serving public_endpoints, of course)
• none, only allows traffic to localhost

These policies are implemented using BPF filters, which at the moment are quite
simplistic, hence the limited configurability.

Non-container services

systemd_services: List of systemd service units that are associated with this
service. Setting this attribute does nothing (the dedicated Ansible role is expected
to install the package fully, including setting up systemd), except providing
grouping information to help float generate monitoring dashboards. Note that
float will actively turn down (disable, mask) these units on the hosts where they
are not scheduled.

Additional service ports

Ports declared in public_endpoints and containers are automatically allowed
internal traffic on the host firewall. But often internal services may want to
expose ports to other internal clients: these ports should be declared in the
service definition so that float can configure the firewall accordingly.

44

ports: List of ports exposed by the service over the internal overlay networks
(traffic will be allowed for both UDP and TCP).

Datasets

datasets: List of dataset definitions.

Each dataset definition can have the following attributes:

name: Name of the dataset (mandatory).

schedule: A schedule on which to run the backup job for this dataset. This can
be either a time specification in the standard cron format, or the special syntax

@random_every interval

which schedules the backup job at a random offset for each host within the
specified interval. Intervals can be written in a human-friendly syntax like 7d or
12h. This is the fundamental mechanism for spreading the load of the different
hosts on the backup server without central coordination. If unspecified, the
default is "@random_every 1d".

path: Local (on each host) filesystem path that contains the dataset. This
selects the file type for the dataset, and is alternative to the backup_command /
restore_command attributes.

backup_command / restore_command: Shell commands for backing up datasets
via stdin/stdout pipes. If these attributes are specified, the source is of pipe
type. They are alternative to the path attribute.

on_master_only: If this attribute is true, and the service’s master_election
attribute is also true, the backup job will only be run on the master host for the
service.

sharded: When this attribute is true, the dataset is considered a sharded
(partitioned) dataset, so float will not automatically attempt to restore it on new
servers: the idea is that for sharded datasets, the application layer is responsible
for data management. This attribute is false by default.

owner, group, mode: For filesystem-backed datasets, float will create the asso-
ciated directory if it does not exist; these parameters specify ownership and
permissions. These permissions will also be reset upon restore.

Volumes

volumes: List of volume definitions describing LVs required by the service.

Each volume definition can have the following attributes:

name: Volume name (mandatory).

path: Path where it should be mounted (mandatory).

45

owner: Owner of the mountpoint (default: root).

group: Group of the mountpoint (default: root).

mode: Mountpoint mode (default: 0755).

The LVs are created in the volume specified by the volumes_vg global configu-
ration variable, which by default is vg0. The VG must already exist, float will
not attempt to create it.

Annotations

annotations: Dictionary with service-specific annotations

Annotations are manually curated metadata associated with the service, intended
for debugging purposes. This is data meant for humans to consume, with the
idea of helping the operators understand and debug your services and their
interconnections.

Annotations are for now only displayed on the float admin dashboard.

summary: A short summary (description) of the service.

Dependency graphs dependencies: A list of additional service dependen-
cies.

Float can automatically compute part of the dependency graph between your
services, at least insofar as the structure of public_endpoints is concerned. Since
this data can be quite useful in understanding the structure of a service, it is
possible to extend the dependency graph manually by specifying additional edges
(representing the dependencies between services).

Edges of the dependency graphs are specified as objects with client and server
attributes, identifying a specific container or systemd unit in either the current
service or a different one. If you’re referring to an entity within the same
service, you can just use its name, while for external services the syntax is
service-name/entity-name (e.g. "log-collector/elasticsearch").

Examples

Let’s look at some example services.yml files:

myservice:
num_instances: 2
service_credentials:

- name: myservice
enable_client: false

public_endpoints:
- name: myservice

type: static
port: 1234

46

systemd_services:
- myservice.service

This defines an Ansible-based service, of which we’ll run two instances. The
service exposes an HTTP server on port 1234, which, assuming domain_public is
set to mydomain.com, will be available at https://myservice.mydomain.com/ on
the nginx service gateways of the core role. Communication between the HTTPS
gateway and the service goes over HTTPS internally using auto-generated
credentials.

myservice:
containers:

- name: myapp
image: myapp:latest
port: 1234

- name: redis
image: redis
port: 6379

public_endpoints:
- name: myservice

type: static
port: 1234
scheme: http

The above describes a container-based service, consisting of two separate pro-
cesses: a web application, and a local Redis server (maybe for caching). The two
processes will always be scheduled together, so myapp can be configured to talk
to Redis on localhost:6379. This time, the service gateway will talk to myapp
over HTTP.

This service does not have any service credentials, but if it did they would be
bind-mounted under /etc/credentials inside the container.

Application credentials (passwords.yml)
This file contains a description of all the application-level credentials that should
be automatically managed by float: these secrets will be randomly generated by
float, and stored in a Vault-encrypted file (secrets.yml in your credentials_dir).
This creation step is part of the init-credentials.yml Ansible playbook (see
Built-in playbooks below).

The credentials configuration file must contain a list of dictionaries, each describ-
ing a separate credential. Supported attributes include:

• name is the name of the Ansible variable that will be created in the resulting
YAML file (mandatory)

• description is a human-readable description of what the credential rep-
resents

47

https://myservice.mydomain.com/

• type can be one of either password (the default) or binary, and it controls
the character set of the resulting password. Right now, due to the require-
ment of command-line friendliness (it appears that Ansible is unable to
correctly encode arbitrary strings when generating remote commands),
both use the base64 charset.

• length is the desired length of the output.

A list element can, alternatively, contain a single include attribute, in which
case the contents of that file will be added to the credentials list.

At the bare minimum, your passwords.yml file should include the pass-
words.yml.default file from the float source tree, which contains all the
credentials for the built-in services:

- include: "/path/to/float/passwords.yml.default"

Global configuration variables
In order to customize the final environment for your installation, there are some
global configuration variables that you should set. These are standard Ansible
variables, and Ansible supports a few ways to define them: one way would be to
add them to the all group in the inventory itself, but more conveniently, they
can just be placed in a YAML file group_vars/all somewhere next to it.

These variables are:

domain (mandatory) is the internal domain name used for hosts and internal
service resolution. It is strongly suggested to use a dedicated domain for this
purpose, so it should be different from any public domain you expect to be using
(but it can be a subdomain of it, for instance internal.example.com). With the
current implementation, there’s no need for this domain to publicly exist at all,
as name resolution is done via /etc/hosts, but this may change in the future.

domain_public (mandatory) should contain a list of the public domain names
that will be used by the global HTTP router to export public HTTP service
endpoints. This is useful when public services should be reachable equally on
separate indipendent domains, like a primary one and a Tor Hidden Service. If
specifying multiple names, put the default public one first - the first element of
this list is used whenever we need a human-readable identifier.

testing is a boolean variable, True by default, that indicates whether we are
running on a test or production environment. In test environments, a number of
variables have different defaults (see the Testing section below).

float_debian_dist (default buster) is the Debian distribution that will be
installed by float on the target servers.

48

Network overlays

The net_overlays configuration variable should contain the list of configured
network overlays, each item a dictionary with the following attributes:

• name - name of the overlay network
• network - the IP network range in CIDR format
• port (optional) - port used by the transport layer (default 655)

More transport-specific parameters are available, for the exact details see the
documentation of the net-overlay Ansible role.

Admin users

The admins configuration variable contains a list of admin users, each a dictionary
with the following attributes:

• name - the username
• email (optional) - user’s email address
• password - encrypted password. For a list of supported algorithms, check

the id/auth documentation.
• totp_secret - TOTP secret for 2FA, base32-encoded
• ssh_keys - a list of strings representing SSH public keys
• webauthn_registrations - a list of objects representing WebAuthN(U2F)

token registrations
• u2f_registrations - a list of objects representing legacy U2F token

registrations, only supported for old registrations created before the switch
to WebAuthN. Don’t add new entries to this list.

Authentication and SSO

enable_keystore - whether to enable the keystore service for user-encrypted
secrets (default false)

sso_server_url - URL for the SSO service. This should match the pub-
lic_endpoint name for the sso-server float service (default: https://login +
domain_public[0]).

sso_extra_allowed_services - list of regular expressions for SSO-enabled
services that are allowed to use the SSO server. All your SSO-enabled services
should be added to this list.

sso_allowed_exchanges - list of items with src_regexp / dst_regexp attributes
that identify valid source and destination SSO service specifications for token
exchange.

SSH

enable_ssh (defaults to true) controls whether float will create a SSH CA and
sign host keys with it, as well as managing the authorized_keys of the root user.

49

../roles/float-base-net-overlay/README.md#overlay-configuration
https://git.autistici.org/id/auth/blob/master/README.md#password-encoding
https://git.autistici.org/id/keystore

When set to false, no changes whatsoever will be made to the SSH configuration
of the hosts.

DNS

static_host_entries - a list of entries with host and addr attributes that
specify static DNS entries that will be added to /etc/hosts on every target host.

Traffic router

nginx_cache_keys_mem is the memory size of the key buffer for the global
NGINX HTTP cache.

nginx_cache_custom_params are additional parameters for customizing the
proxy_cache_path NGINX configuration directive for the global cache. The
most important attribute you might want to set is possibly max_size, which
controls the maximum size of the on-disk cache (note that NGINX might use as
much as twice what specified, depending on expiration policy).

nginx_global_custom_headers - a dictionary of {header: value} pairs corre-
sponding to HTTP headers that must be set on every response.

nginx_top_level_domain_redirects - a dictionary of {domain: target} tuples
used for redirecting top-level domains to specific destinations (DNS must be
managed manually).

Logging

enable_elasticsearch controls whether to enable the Elasticsearch service
which is normally part of the log-collector infrastructure. As this is a large Java
daemon with significant memory requirements, it is often useful to disable it for
testing environments. Note that in this case one should import services.core.yml
instead of the default services.default.yml.

es_log_keep_days is a dictionary that specifies the retention time for the various
log types, in days. The default is { audit: 60, logstash: 15, http: 15 }.

Monitoring

alert_runbook_fmt is a format expression used to generate runbook URLs for
alerts. The format expression should contain a single %s token which will be
replaced by the alert name.

prometheus_tsdb_retention controls the time horizon of the primary
Prometheus instances (default 90d). Set it to a shorter value when enabling
long-term storage mode.

prometheus_lts_tsdb_retention controls the time horizon of the long-term
Prometheus instances (default 1 year), when they are enabled.

50

prometheus_scrape_interval sets how often the primary Prometheus instances
should scrape their targets (default 10s).

prometheus_lts_scrape_interval sets how often the long-term Prometheus
instances should scrape the primary ones (default 1m).

prometheus_probe_scrape_interval controls the default scrape_interval
setting for all blackbox probes, and it just defaults to the value of
prometheus_scrape_interval if unset.

prometheus_external_targets allows adding additional targets to Prometheus
beyond those that are described by the service metadata. It is a list of entries
with name, targets attributes. Optionally, you may specify a scheme (eg. ’https’)
if the default ’http’ is insufficient; as well as basic_auth details; JSON Web
Token (JWT) as a bearer_token; or tls_config options, if necessary. For example:

- { name: 'node-external',
targets: ['foo.example.com:9100', 'bar.example.com:9100'] }

- { name: 'restic',
targets: ['baz.example.com:8000'],
scheme: 'https',
basic_auth: { username: foo, password: bar },
tls_config: { insecure_skip_verify: true }

}
- { name: 'minio,

targets: ['objects.example.com:9000'],
scheme: 'https',
bearer_token: 'xxxxxxx',
metrics_path: '/minio/v2/metrics/cluster'

}

prometheus_federated_targets is a list of external Prometheus instances to
scrape ("federate" in Prometheus lingo).

prometheus_additional_blackbox_probers is a list of additional prober tar-
gets for Prometheus. See the "Adding blackbox probes" section for further
details.

alert_webhook_receivers is a list of entries with name / url attributes repre-
senting escalation webhook URLs for the alertmanager, allowing alert delivery
over non-email transports. Additionally, the send_resolved boolean can be also
be indicated for each, if you want to be notified about resolved alerts (default
False).

Third-party services

ACME Float’s ACME certificate generation service does not require any
configuration, as it will automatically generate a Letsencrypt account. It is

51

possible, however, to tell it to use a specific account by providing it with a
private key:

acme_private_key - ACME private key, in PEM format

Private Docker registry You can have float use a private Docker registry by
providing it with the credentials for "docker login":

docker_registry_url - URL of the private Docker registry

docker_registry_username - username for "docker login"

docker_registry_password - password for "docker login"

SMTP relay Even though float does not itself generate any email messages
(email-based notifications don’t scale well with the number of servers), properly
configured systems might still need a way to send out system-originated emails.
If necessary, float can configure simple outbound delivery of such emails via an
authenticated SMTP relay (using ssmtp), by defining the mail_relay variable,
a dictionary with the following parameters (all mandatory):

server and port - address of the SMTP relay user and password - credentials
for SMTP authentication root_user - the user that should receive all email for
root@localhost

NOTE that the delivery of email alerts is configured separately, see the following
Alert delivery section.

Alert delivery The float monitoring system requires an external email account
to deliver its alerts over email. This is configured separately from "normal" SMTP
delivery to encourage the usage an external infrastructure for alert delivery: it’s
not a good idea to send critical alerts over the same infrastructure that you are
monitoring.

Alert delivery can be configured with the following variables:

alert_email - address that should receive email alerts

alertmanager_smtp_from - sender address to use for alert emails

alertmanager_smtp_smarthost - server to use for outbound SMTP

alertmanager_smtp_require_tls should be set to true if the server requires
TLS

alertmanager_smtp_auth_username and alertmanager_smtp_auth_password
- credentials for authentication

alertmanager_smtp_hello - hostname to use in the HELO SMTP header sent
to the server (default localhost)

52

If alert_email is left empty, alertmanager won’t deliver any alerts but it will
still be active and functional (via amtool).

Backups To configure the backup system, you’re going to need credentials
for the third-party (external) data storage services. While it is possible to
run a production service without backups configured, note that the cluster’s
functionality will be incomplete unless at least a Litestream backend is configured.

Bulk backup (Restic) backup_repository_uri - URI of the global (shared)
restic repository. Though Restic supports numerous backends, float works best
with Restic’s own REST Server.

backup_repository_restic_password - password used to encrypt the restic
repository.

Asynchronous SQLite replication (Litestream) Litestream requires a
S3-compatible API to store its SQLite WAL snapshots.

backup_litestream_config is the object that configures the Litestream replica
target, and it corresponds to the "replica" field of the Litestream configuration, so
you can check the Litestream documentation for reference. The most important
fields to set are endpoint (the URL of the storage service API), and bucket
(the name of the bucket to use). The path attribute will be automatically set by
float, based on the dataset name.

backup_litestream_credentials is a dictionary of environment variables to
configure credentials for access to the backend storage service. Keys will depend
on which type of API is being used, but for the default s3 type they should be
LITESTREAM_ACCESS_KEY_ID and LITESTREAM_SECRET_ACCESS_KEY.

An example of a (fictional) litestream configuration:

backup_litestream_config:
type: s3
endpoint: "https://backup.service:9000/"
bucket: "mybackups"

backup_litestream_credentials:
LITESTREAM_ACCESS_KEY_ID: "minio"
LITESTREAM_SECRET_ACCESS_KEY: "miniopassword"

Operations
Requirements
On the driver host

You’re going to need a relatively recent version of Ansible (>= 2.7), and a few
small other custom tools used to manage credentials, that you will build yourself.

53

https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
https://github.com/restic/rest-server
https://litestream.io/reference/config/#replica-settings
https://ansible.com

Float also requires a Python 3 interpreter, now that Python 2 is unsupported.

sudo apt install golang ansible
go install git.autistici.org/ale/x509ca@latest
go install git.autistici.org/ale/ed25519gen@latest
export PATH=$PATH:$HOME/go/bin

NOTE : the Ansible version packaged with Debian buster (2.7.7) needs
a patch if your service configuration includes MySQL instances, see the
ansible-buster.patch file in the top-level directory for instructions.

On the target hosts

Float only supports targets running a Debian distribution (generally around
the current stable). Furthermore, in order to run Ansible, both the python and
python-apt packages need to be installed.

Float likes to think it "owns" the machines it’s deployed on: it will assume it
can modify the system-level configuration, install packages, start services, etc.

However, it assumes that certain functionality is present, either managed manu-
ally or with some external mechanism (your own Ansible roles, for instance):

• Network configuration must be externally managed, except for the network
overlays explicitly configured in float.

• Partitions, file systems, LVs must be externally managed, with the exception
of the volumes explicitly defined in your configuration, which will be created
by float when necessary.

• SSH access and configuration must be externally managed unless you
explicitly set enable_ssh=true (and add SSH keys to your admin users),
in which case float will take over SSH configuration and you might need to
modify your Ansible SSH configuration after the first run.

Float does not use, and does not modify, the hostname of the servers it manages:
it only references the host names used in the inventory. Things will be less
confusing if you ensure that the names match, but it is not a strict requirement.

Ansible Integration
The toolkit is implemented as a set of Ansible plugins and roles, meant to be
integrated into your own Ansible configuration. The plugins are:

• inventory/float.py, which provides the core of the functionality: it parses
the services descriptions, runs the scheduling algorithm, and creates a
variety of pre-defined Ansible variables and artifacts for the roles to use;

• actions/ plugins that perform credentials-related generation and signing in
a standardized fashion: these are tasks with local and remote components
that would otherwise be very verbose if expressed as Ansible tasks, so they
have been made into modules instead;

54

• vars/gpg_vars.py which adds to Ansible the ability to read GPG-encrypted
files (with a .gpg extension) from vars and group_vars subdirectory -- it
is not used directly by float and it is provided just as a convenience.

There are many Ansible roles used by the float infrastructure, so they are loosely
organized with their naming scheme in three major groups:

• base roles implement the necessary low-level functionality required by the
infrastructure, setting up machines and preparing them to run containers,
distributing the necessary credentials, setting up networking, etc.

• infra roles are meant to configure specific services that are part of the
wider float cluster-level infrastructure but, with few exceptions, run on top
of the float infrastructure itself provided by the base layer;

• util roles implement internal functionality and are generally meant to be
included by other roles, or to handle common Ansible-related logic that
does not fit elsewhere.

Setting up your Ansible environment

To use float, you will have to include it from your own Ansible configuration,
and specify the inventory and service configuration in our own format.

There are some minimal requirements on how your Ansible environment should
be set up for this to work:

• you must have a group_vars/all directory (this is where we’ll write the
autogenerated application credentials file secrets.yml)

• you must include float’s playbooks/all.yml playbook file from the toolkit
source directory at the beginning of your playbook

• you should use the float wrapper instead of running ansible-playbook directly
(it helps setting up the command line)

Float requires the usage of Ansible Vault for its application-level secrets file.
This means that you need to set an ANSIBLE_VAULT_PASSWORD_FILE
pointing at a file containing the ansible-vault passphrase. A useful feature
to remember is that Ansible Vault will execute, not read, the ANSI-
BLE_VAULT_PASSWORD_FILE if it is executable, which allows you to set
up an encrypted-at-rest self-decrypting passphrase file, e.g.:

$ (echo '#!/usr/bin/gpg -d'; gpg -a -e .ansible_vault_pw) \
> .ansible_vault_pw.gpg

$ chmod +x .ansible_vault_pw.gpg
$ export ANSIBLE_VAULT_PASSWORD_FILE=.ansible_vault_pw.gpg

Your ansible.cfg configuration file must point at float’s plugins and roles. As-
suming the float source repository is stored in the ./float directory (as it is
common when using git submodules to import it), the following directives should
be set:

[defaults]

55

roles_path = ./float/roles:./roles
inventory_plugins = ./float/plugins/inventory
action_plugins = ./float/plugins/action
vars_plugins = ./float/plugins/vars
force_handlers = True

[inventory]
enable_plugins = float

(the above will also look for your own roles in the ./roles dir).

The force_handlers option is important because float controls system status via
handlers, and they should run even in case of errors.

Variables

The float plugin sets a number of host variables and global configuration param-
eters that can be used by service-specific Ansible roles.

The following global variables are defined:

• services holds all the service metadata, in a dictionary indexed by service
name;

Other variables are defined in hostvars and will be different on every host
depending on the service assignments (note that <service> is a placeholder for
the service name, where dashes have been replaced by underscores):

• float_enable_<service>, that evaluates to true on the hosts assigned to
the service (note: dashes in the service name are converted to underscores)

• float_instance_index_<service> is the progressive index of the current
instance of the service (0-based).

• float_<service>_is_master is true on the host where the master instance
is scheduled, and false elsewhere. This variable is only defined for services
using static master election (i.e. where master_election is true in the
service metadata)

• float_enabled_services contains the list of enabled services on this host
• float_disabled_services contains the list of disabled services on this

host
• float_enabled_containers contains a list of dictionaries describing the

containers that should be active on this host. The dictionaries have the
following attributes:

– service is the service metadata
– container is the container metadata

Groups

The scheduler also defines dynamic Ansible groups based on service assignments:

56

• For each service, it will define a host group named after the service, whose
members are the hosts assigned to the service. Note that the group name
will be normalized replacing dashes with underscores, to satisfy Ansible
group naming expectations.

• For each network overlay defined in the inventory, it will define a host
group named overlay_<name> whose members are the hosts included in
that overlay.

These groups can then be used to assign service-specific roles to the scheduled
hosts in the playbook, e.g. assuming the Ansible role is named after the service:

- hosts: my_service
roles:

- my-service

On the other hand, if you need to access the list of assignments for a specific
service, it is best to do it using the services global variable (so you do not have to
think about service group name normalization), using a service’s hosts attribute:

{% for h in services[’my-service’].hosts | sort %}
{{ h }}.my-service.{{ domain }}

{% endfor %}

Float depends on the frontend group being defined by the user in the inventory.

The float command-line tool
While it is perfectly possible to use float just as an Ansible "library", using
your normal Ansible workflow and running ansible-playbook, we provide a simple
command-line wrapper for convenience. This wrapper is also called float, and you
can find it in the root directory of this repository. The tool also contains some
useful functionality for generating configuration templates for your environments.

Since it is basically a wrapper for ansible-playbook, it only requires Python and
Ansible to be installed and introduces no additional dependencies.

The float tool has a command-based syntax. The known commands are:

create-env

The create-env command generates a configuration for a new float test environ-
ment (i.e. with testing=true). Its primary focus is test jobs in a Continuous
Integration system, where it is useful to have the ability to programmatically
evaluate different combinations of service and runtime configurations. The in-
tention is to support the distinction between the service description ("what to
test"), read from the filesystem, and the runtime configuration ("how to test it"),
controlled via command-line flags.

The command expects an existing service description: it needs pre-existing
services.yml, passwords.yml and site.yml files (respectively the service metadata,

57

the credentials metadata, and the top-level playbook for your infrastructure).
You should use the --services, --passwords and --playbook options to specify
their location, or it will just use float’s uninteresting defaults. If your playbook
includes custom Ansible roles, use the --roles-path option to let Ansible find
them.

The resulting configuration will include an auto-generated inventory file, and a
matching Vagrantfile to run test VMs.

Command-line options control characteristics of the runtime environment and
its configuration:

• --domain and --infra-domain allow you to quickly set the top-level float
configuration variables domain and domain_public.

• --num-hosts specifies how many hosts should be created in the inventory.

• --services, --passwords and --playbook specify the location of service de-
scriptions, credentials metadata, and the top-level playbook for the in-
frastructure to be tested. These flags can be specified multiple times, the
resulting configuration will include all of them.

Further configuration is available via the ’-e’ command-line option, which allows
you to set internal configuration variables. The internal configuration is a
dictionary with the following elements:

• libvirt: Configuration for remote libvirt usage
– remote_host: Hostname of the remote libvirt server
– remote_user : Username on the remote libvirt server

∗ ssh_key_file: SSH key file (in ~/.ssh/config) to use to authenti-
cate to the remote libvirt server

• ansible_cfg: Ansible configuration, split into sections, the most interesting
one of which is defaults

• config: Configuration variables for float, common to all hosts (i.e. variables
that end up in group_vars/all)

Dotted notation is used to address elements nested in the internal configuration
dictionary, e.g.:

-e ansible_cfg.defaults.strategy=mitogen_linear

will enable Mitogen if it’s installed system-wide, and

-e config.apt_proxy=1.2.3.4:3024

will set the "apt_proxy" float configuration variable, enabling usage of a HTTP
caching proxy for APT packages.

The script will auto-generate an inventory consisting of the desired number of
hosts (selected via --num-hosts), named host1...hostN, with IPs in a randomly-
selected 10.x network (starting from .10, since .1 is reserved for the Vagrant host
itself).

58

The first host will be a member of the frontend group, all others of the backend
group, unless there is just a single host, in which case it will be part of both
frontend and backend groups at once. Additional groups can be defined, along
with their host memberships, using the --additional-host-group command-line
option.

run

The run command executes a playbook, and it’s basically a wrapper to ansible-
playbook that simplifies setting up the environment variables required for the
float plugins to work. In practical terms, this means:

• auto-location of built-in playbooks: if the playbook path passed to float
run does not exist, the tool will look for it in the playbooks directory of
the float source repository, possibly adding the .yml extension if missing.
This makes it possible to, for instance, invoke the docker built-in playbook
simply by running:

/path/to/float/float run docker

The run command will read the float configuration from the config.yml file in
the current directory by default. You can use the --config command-line flag to
point it at a different configuration file.

Most ansible-playbook options are supported, though not all of them, including
--diff, --check, and --verbose.

The above command is pretty much equivalent to:

ansible-playbook -i config.yml playbooks/docker.yml

so it is possible that, as functionality is removed from the wrapper, the run
command might eventually disappear.

Built-in playbooks

You can invoke any valid Ansible playbook with "float run", but there are specific
playbooks bundled with float that are meant to perform specific tasks:

• init-credentials.yml initializes the long-term credentials associated
with a float environment, including application secrets from passwords.yml.
This playbook must be run first, before any other float playbooks can
run. It is not run as part of the default playbook, but it is kept separate
because init-credentials is the only playbook that creates changes to your
local repository.

• apt-upgrade.yml upgrades all packages and removes unused ones. This
task is also not run (for the moment) as part of the default playbook, to
grant explicit control on when package updates are run.

59

../playbooks/docker.yml

Testing
Float, like most similar systems, pushes you to split your configuration into two
separate parts:

• a description of the services and their associated Ansible roles
• a list of target hosts and some global configuration variables

this second part is what is called an environment. It establishes the specific
identity of an installation, and if things have been done properly (i.e. the
service description does not have any hard-codec parameters that should be
installation-specific) you can have many of them, each reproducing the full
functionality.

This is so useful for testing purposes that float has functionality explicitly
dedicated to support the quick creation of testing environments, that use tools
like Vagrant to create virtual machines to use as installation targets.

Running float with Vagrant

The create-env command of the float command-line tool can be used to generate
a Vagrant configuration file along with the float configuration skeleton, by passing
it the --vagrant option.

There are additional command-line options available to set the desired number
of hosts (--num-hosts) and their memory allocation (--ram). The resulting
Vagrantfile will be tuned for the Virtualbox provider (default), but it can be
tuned for libvirt instead if the --libvirt option is used. In this case, it is possible
to use a remote libvirt instance (over SSH) by specifying --libvirt=USER@HOST,
or to use the local one with --libvirt=localhost.

A note on remote libvirt setups: since float testing environments tend to be
relatively resource- and bandwidth-intensive (we do not recommend running test
VMs with less than 1-2 GBs of RAM, and there are a few GBs of packages to
download), this has proven to be a robust solution to let administrators set up
test environments even without requiring beefy hardware or network connections,
but using instead the resources of some online server.

From that point on, running a testing environment involves simply:

$ vagrant up
$ float run init-credentials.yml
$ float run site.yml

Functionality available in testing environments

Some things in the float infrastructure are configured differently when test-
ing=true, to facilitate debugging and inspection. These are also the reasons why
you should not run a production (publicly accessible) environment with testing
set to true.

60

• all logs are collected on the log-collector hosts in text format under
/var/log/remote, for easy inspection without having to go through Elastic-
search

• a SOCKS5 proxy is run on port 9051 on the first host of the frontend group,
without authentication. This is so you can connect to the HTTP services
offered by the test environment, using the DNS from the environment
itself.

• the ACME automation will only generate self-signed certificates and it will
not attempt to contact Letsencrypt servers

List of administrative web applications
These are all the available web interfaces in the default float service configuration.
They are all protected by single sign-on. Here domain stands for your public
domain:

• https://admin.domain - float main dashboard, lists all the configured
services and their assigned hosts

• https://logs.domain - Kibana dashboard for exploring logs

• https://grafana.domain - Grafana monitoring dashboards

• https://alerts.domain - Summary of the currently firing alerts

• https://monitor.domain - Prometheus web interface, useful for manually
exploring metrics

• https://prober.domain - Prometheus blackbox prober web UI

• https://backups.domain - Backup management dashboard

Common tasks
Rolling back the configuration

If you are using a Git repository as your configuration source, float will keep track
of which commit has been pushed to production last, and it will try to prevent
you from pushing an old version of the configuration, failing immediately with
an error. This is a simple check to make sure that people do not inadvertently
roll back the production configuration by pushing from an out-of-date client.

In most cases what you want to do in that case is to simply run git pull and
bring your copy of the repository up to date. But if you really need to push an
old version of the configuration in an emergency, you can do so by setting the
rollback value to true on the command-line:

$ float run -e rollback=true site.yml

61

Adding an admin account

Adding a new administrator account is just a matter of editing the admins
configuration variable and add a new entry to it.

The first thing you will need is a hashed version of your password. The authenti-
cation service in float supports a number of legacy hashing schemes, including
those supported by the system crypt(). The most secure hashing scheme sup-
ported is Argon2, and you can use our custom tool to generate a valid hash. To
install it:

$ go install git.autistici.org/ai3/go-common/cmd/pwtool

Run the pwtool utility with your new password as an argument, as shown below:

Do not save your password in the history of your shell
$ export HISTIGNORE="./pwtool.amd64*"
$./pwtool.amd64 PASSWORD

where PASSWORD is your desired password.

It will output the hashed password.

Then modify the YAML file group_vars/all/admins.yml. At the bare minimum
the new account should have a name, email, password and ssh_keys attributes,
e.g.:

admins:

- name: "foo"
email: "foo@example.com"
password: "$a2$3$32768$4$abcdef...."
ssh_keys:

- "ssh-ed25519 AAAAC3Nza..."

Here above "ssh_keys:" needs to be populated with your public key, possibly
stripped from the trailing user@hostname text (which may leak your personal
information), and "password:" must be the hashed password you got from pwtool
earlier.

Setting up OTP for an admin account

First you need to manually generate the OTP secret on your computer:

$ SECRET=$(dd if=/dev/urandom bs=20 count=1 2>/dev/null | base32)
$ echo $SECRET
EVUVNACTWRAIERATIZUQA6YQ4WS63RN2

Install the package qrencode, and feed the OTP secret to it. For example with
apt ["apt install qrencode" of course].

62

$ EMAIL="foo@example.com"
$ qrencode -t UTF8 "otpauth://totp/example.com:${EMAIL}?secret=${SECRET}&issuer=example.com&algorithm=SHA1&digits=6&period=30"

and read the qrcode with your favourite app.

Then add it to your user object in group_vars/all/admins.yml as the totp_secret
attribute:

admins:

- name: "foo"
totp_secret: "EVUVNACTWRAIERATIZUQA6YQ4WS63RN2"
...

Finally, configure your TOTP client (app, YubiKey, etc.) with the same secret.

Note that the secret is stored in cleartext in the git repository, so using a
hardware token (U2F) is preferred.

Registering a U2F hardware token for an admin account

In the group_vars/all/admins.yml file, you can add the webauthn_registrations
attribute to accounts, which is a list of the allowed WebAuthN/U2F device
registrations.

To register a new device, you are going to need to install another small custom
tool: webauthn-cred. Follow its installation instructions to obtain the webauthn-
cred binary, then invoke it to make a new registration:

$ webauthn-cred --rpid accounts.example.com

follow the instructions, copy the output and insert it in group_vars/all/admins.yml
as a new item in the webauthn_registrations attribute of your user. The final
results should look like:

admins:

- name: "foo"
email: "foo@example.com"
password: "$a2$3$32768$4$abcdef...."
ssh_keys:

- "ssh-ed25519 AAAAC3Nza..."
webauthn_registrations:

- key_handle: "r4wWRHgzJjl..."
public_key: "ajgh73-31bc..."

Upgrading Debian version on target hosts

Float generally targets the current Debian stable distribution, but it uses explicit
distribution names (stretch, buster, etc) to avoid unexpected dist-upgrades.

63

https://git.autistici.org/ai3/tools/webauthn-cred

Whenever the Debian stable version changes, you should probably upgrade your
servers too. There is support for this as a multi-step process:

• Set float_debian_dist to the new codename (e.g. "buster") in your
group_vars/all configuration.

• Run float, which will install the correct APT sources for the new release
and upgrade the servers.

• Reboot the servers into the new kernels.

If you want more control over this process (Debian upgrades have been event-less
for a while now, but it’s not always been the case) you can of course run the
upgrade manually.

Decommissioning a host

When turning down a host, it is necessary, at some point, to reschedule the
services that were there onto some other hosts. To achieve a smooth transition,
this is best done while the host is still available.

To do this, set the turndown attribute to true in the inventory for the host you
want to turn down, and then run float once more. This should safely reschedule
all services, and remove them from the target host. It is then possible to simply
shut down the target host and wipe its data.

Example scenarios
This section will look at some example scenarios and use cases for float, and will
look into some possible configurations for them.

Simple HTTP application
The simplest possible scenario involves a stateless HTTP web application, which
for convenience we will package as a single standalone container (no databases,
data storage, or anything). Let’s take as an example okserver, a simple and
completely useless HTTP web application that will just respond "OK" to any
request.

What we expect is to turn a few hosts we have into a robust platform for
serving this web application, along with valid DNS records, certificates, all that
is necessary.

The services.yml file will include the float default services, and it will add our
own. We’ve randomly chosen port 3100 (which we know is available) for the
service.

include:
- "/path/to/float/services.default.yml"

ok:

64

https://git.autistici.org/ai3/docker/okserver

scheduling_group: backend
num_instances: 1
containers:

- name: http
image: registry.git.autistici.org/ai3/docker/okserver:master
port: 3100
env:

PORT: 3100
public_endpoints:

- name: ok
port: 3100
scheme: http

The container is fully configured via environment variables, so there is no need
to create a corresponding Ansible role to create configuration files or any other
setup steps.

The scenario is so simple that we can run it on a single host, so we can create
an inventory file where our only hosts shares the frontend and backend groups:

hosts:
host1:

ansible_host: 1.2.3.4
ip: 1.2.3.4
name: host1
groups: [frontend, backend]

The same services.yml would automatically provide a highly-available architecture
when scaled to multiple hosts with their separate frontend and backend groups.

A UDP service
Let’s consider a scenario where the service that we want to offer is not HTTP- or
TCP-based, for example a UDP-based videoconferencing app: here we’ll have to
do a bit more work, because float’s reverse proxying architecture does not handle
this case. Furthermore, in this case we do not want a reverse proxy architecture
at all, because the resource that we need to manage is bandwidth.

A reasonable option would be to simply have another group of hosts that is
neither frontend nor backend, but is dedicated to receiving (and scaling) this
type of traffic specifically.

So our inventory could look like:

hosts:
host1:

ansible_host: 1.2.3.4
ip: 1.2.3.4
name: host1

65

groups: [frontend, backend]
host2:

ansible_host: 2.3.4.5
ip: 2.3.4.5
name: host1
groups: [videoconf]

Note that there is no need for it to be separate from frontend/backend, it’s just
to show that the group can be scaled independently.

The services.yml file:

include:
- "/path/to/float/services.default.yml"

videoconf:
scheduling_group: videoconf
num_instances: all
containers:

- name: http
image: video.conf.container:stable
port: 3200
env:

PORT: 3200

The lack of any public endpoint in the videoconf service specification has a few
consequences:

• float won’t generate an HTTP config (fine, we don’t need it) nor a DNS
configuration for this service, and we need this one in order to send users
to the right servers;

• no firewall rules will be generated automatically.

We’re going to have to address these issues with custom Ansible roles. We’re going
to need two of them: one to be run on the frontend hosts, to customize the DNS
configuration, and one on the videoconf hosts to fix the firewall configuration.

roles/videoconf/tasks/main.yml

- name: Set up firewall
copy:

dest: /etc/firewall/filter.d/99videoconf
content: |

add_port udp 3200

roles/videoconf-frontend/tasks/main.yml

- name: Set up DNS for videoconf
template:

dest: /etc/dns/videoconf.yml
src: dns.yml.j2

66

roles/videoconf-frontend/templates/dns.yml.j2

videoconf.{{ domain_public[0] }}:
{% for host in groups['videoconf'] | sort %}

- A {{ hostvars[host].public_ip | default(hostvars[host].ip) }}
{% endfor %}

this will point videoconf.my.domain to the hosts in the videoconf group (using
their public_ip host attribute, if defined, or falling back to ip).

playbook.yml

- hosts: frontend
roles:

- videoconf-frontend
- hosts: videoconf

roles:
- videoconf

67

	Services
	Compute units
	Structuring services in terms of compute units
	Containers
	System-level daemons
	Networking
	Users and permissions

	Data
	Backups
	Volumes

	SSL Credentials
	Internal mTLS PKI
	Public credentials

	Configuration
	On the Ansible requirement

	Infrastructure Part 1: Base Layer
	Service Discovery
	Naming
	Locating service backends

	Network Overlay
	Traffic Routing
	High-level traffic flow
	HTTP
	SSL Certificates
	HTTP Cache
	Controlling incoming HTTP traffic
	Non-HTTP

	Public DNS
	Customizing DNS

	SSL
	Generating additional SSL certificates

	SSH
	SSH Host Certificates
	SSH Client Setup

	Integrating base services with other automation

	Infrastructure Part 2: Cluster Services
	Authentication and Identity
	Authentication
	Single sign-on
	User-encrypted secrets
	Authentication workflows

	Monitoring
	Customizing alerts
	Scaling up the monitoring infrastructure
	Adding external targets
	Adding blackbox probes
	Customizing alert timeouts for additional blackbox probes

	Log Collection and Analysis
	Log types
	Metric extraction
	Metadata extraction
	Technical implementation details

	Configuration
	Inventory (hosts.yml)
	Groups
	Host variables
	Example

	Service metadata (services.yml)
	Scheduling
	Credentials
	Monitoring
	Traffic routing
	Containers
	Non-container services
	Additional service ports
	Datasets
	Volumes
	Annotations
	Examples

	Application credentials (passwords.yml)
	Global configuration variables
	Network overlays
	Admin users
	Authentication and SSO
	SSH
	DNS
	Traffic router
	Logging
	Monitoring
	Third-party services

	Operations
	Requirements
	On the driver host
	On the target hosts

	Ansible Integration
	Setting up your Ansible environment
	Variables
	Groups

	The float command-line tool
	create-env
	run
	Built-in playbooks

	Testing
	Running float with Vagrant
	Functionality available in testing environments

	List of administrative web applications
	Common tasks
	Rolling back the configuration
	Adding an admin account
	Setting up OTP for an admin account
	Registering a U2F hardware token for an admin account
	Upgrading Debian version on target hosts
	Decommissioning a host

	Example scenarios
	Simple HTTP application
	A UDP service

